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1. Find all real roots of the equation

4x4 − 12x3 − 7x2 + 22x+ 14 = 0,

if it is known that it has four distinct real roots, two of which sum up to 1.

Solution. Denote the roots by x1, x2, x3, x4 in such a way that x1 + x2 = 1. Then

4x4 − 12x3 − 7x2 + 22x+ 14 = 4(x− x1)(x− x2)(x− x3)(x− x4).

Comparing the coefficients at the corresponding powers of x, we obtain the familiar
Vièta’s relations

x1 + x2 + x3 + x4 = 3, (1)

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = −7

4
, (2)

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −11

2
, (3)

x1x2x3x4 =
7

2
. (4)

Since x1 + x2 = 1, it follows from (1) that x3 + x4 = 2. We rewrite the equations (2)
and (3) in the form

(x1 + x2)(x3 + x4) + x1x2 + x3x4 = −7

4
,

(x1 + x2)x3x4 + (x3 + x4)x1x2 = −11

2
,

.

Upon substituting x1 + x2 = 1 and x3 + x4 = 2, this yields

x1x2 + x3x4 = −15

4
,

2x1x2 + x3x4 = −11

2
.
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From this system of linear equations it is already easy to obtain

x1x2 = −7

4
, x3x4 = −2.

Observe that for these values of the products x1x2 and x3x4, the equation (4) —
which we have not used so far — is also satisfied. From the conditions x1 + x2 = 1,
x1x2 = − 7

4
it follows that x1 and x2 are the roots of the quadratic equation

x2 − x− 7

4
= 0, i.e. x1,2 =

1

2
±

√
2.

Similarly, from the conditions x3 + x4 = 2 and x3x4 = −2 we obtain

x3,4 = 1±
√
3.

Since, as we have already remarked, these roots satisfy all equations (1) to (4),
they are also a solution to the original problem.

Conclusion. The roots of the equation are 1

2
+
√
2, 1

2
−
√
2, 1 +

√
3, and 1−

√
3.

Other solution. From the hypothesis it follows that the left-hand side of the equa-
tion is the product of polynomials

x2 − x+ p and 4x2 + qx+ r,

where p, q and r are real numbers. Upon multiplying out and comparing coefficients
at the corresponding powers of x, we obtain a system of four equations with three
unknowns

q − 4 = −12,

4p− q + r = −7,

pq − r = 22,

pr = 14.

The first three equations have a unique solution r = −8, p = − 7

4
and q = −8, which

also fulfills the fourth equation. Thus we arrive at the decomposition

4x4 − 12x3 − 7x2 + 22x+ 14 =
(

x2 − x− 7

4

)

(4x2 − 8x− 8).

The equation x2 − x − 7

4
= 0 has roots 1

2
±

√
2, and the equation 4x2 − 8x − 8 = 0

has roots 1±
√
3.
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2. The incircle of a given triangle ABC touches its sides BC, CA, and AB at points
K, L and M , respectively. Denote by P the intersection of the bisector of the
interior angle at the vertex C with the line MK. Show that the lines AP and LK
are parallel.

Solution. Denote by k the incircle of the triangle ABC and by S its center. Let
further α, β and γ denote the magnitudes of the interior angles in the triangle ABC
in the usual way. Since the points K and L are axially symmetric with respect to the
bisector of the interior angle at the vertex C, the lines KL and CP are perpendicular
and | 6 LPC| = | 6 KPC| (Fig. 1).

A B

C

M

P

L

K

S

Fig. 1

Expressing the magnitudes of the interior angles at the bases KM and LK in
the isosceles triangles KMB and LKC, respectively, we get | 6 MKB| = 90◦ − 1

2
β

and | 6 LKC| = 90◦ − 1

2
γ. Thus | 6 MKL| = 90◦ − 1

2
α. Similarly it follows that

| 6 KLM | = 90◦ − 1

2
β and | 6 LMK| = 90◦ − 1

2
γ.

Since | 6 KPC| + 1

2
γ = | 6 BKP | = 90◦ − 1

2
β, we obtain the equality for the

magnitude of the axially symmetric angles LPC and KPC

| 6 LPC| = | 6 KPC| = 90◦ − β + γ

2
=
α

2
.

The incircle k of the triangle ABC is at the same time the circumcircle of the
triangle KLM , which is, in view of the magnitudes of its angles that we have com-
puted, acute. The center S of this circle is therefore an interior point of the latter
triangle, hence, an interior point of the segment CP . Since

| 6 LPC| = | 6 LPS| = | 6 LAS| = α

2
,

the quadrangle APSL is chordal. Since the angle ALS is right, the angle APS is
also right (the lines AP and CP are perpendicular), thus the lines KL and AP are
parallel. This completes the proof.

Remark. Since k is the circumcircle of the triangle KLM , it is easy to express
its interior angles from the corresponding central angles: | 6 KSL| = 180◦− γ, whence
| 6 KML| = 90◦ − 1

2
γ, etc.
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3. If x, y, z are real numbers from the interval 〈−1, 1〉 such that xy + yz + zx = 1,
then

6 3

√

(1− x2)(1− y2)(1− z2) 6 1 + (x+ y + z)2.

Give a proof, and find when the equality holds.

Solution. For any real numbers x, y, z ∈ 〈−1, 1〉, we have 1 − x2 > 0, 1 − y2 > 0,
1 − z2 > 0. Applying the inequality between the arithmetic and the geometric mean
to the triple of nonnegative real numbers 1− x2, 1− y2, 1− z2, we thus get

3

√

(1− x2)(1− y2)(1− z2) 6
(1− x2) + (1− y2) + (1− z2)

3

=
3− (x2 + y2 + z2)

3
,

whence
6 3

√

(1− x2)(1− y2)(1− z2) 6 6− 2(x2 + y2 + z2). (1)

We show that if the real numbers x, y, z ∈ 〈−1, 1〉 satisfy xy + yz + zx = 1, then
they also satisfy the inequality

6− 2(x2 + y2 + z2) 6 1 + (x+ y + z)2. (2)

Indeed, the right-hand side of this inequality has the form

1 + x2 + y2 + z2 + 2(xy + yz + zx) = 3 + (x2 + y2 + z2),

which upon substituting (2) leads to the equivalent inequality

x2 + y2 + z2 > 1.

However, this is easily verified to be true: indeed, it suffices to show that for any real
numbers x, y, z satisfying the hypothesis of our problem, we have the inequality

x2 + y2 + z2 > xy + yz + zx,

which, however, is equivalent to the inequality

(x− y)2 + (y − z)2 + (z − x)2 > 0,

which holds for arbitrary real numbers x, y, z.

Conclusion. The inequality we were to prove follows from the inequalities (1)
and (2). Equality takes place if and only if it takes places simultaneously in both
(1) and (2); this happens if and only if x = y = z, which in view of the condition

xy + yz + zx = 1 gives the only two solutions x = y = z = ± 1

3

√
3.
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4. Find for which natural numbers n it is possible to decompose the set M =
{1, 2, . . . , n} into a) two b) three mutually disjoint subsets having the same num-
ber of elements and such that each of them also contains the arithmetic mean of
all its elements.

Solution. a) Denote the desired subsets by A and B. Since they both have the same
number of elements, the number of elements of M must be even. Thus n = 2k, where
k is a natural number.

For n = 4 no such decomposition of M = {1, 2, 3, 4} into two subsets can exist,
since the arithmetic mean of two distinct numbers cannot be equal to either of these
numbers. Let us construct a desired decomposition of the set M for the first few even
values of the number n (the arithmetic mean of the elements in the subsets is set in
boldface).

n = 2: A = {1} B = {2}
n = 4: decomposition does not exist
n = 6: A = {1,2, 3} B = {4,5, 6}
n = 8: A = {2, 3,4, 7} B = {1,5, 6, 8}
n = 10: A = {1, 2,3, 4, 5} B = {6, 7,8, 9, 10}
n = 12: A = {1, 2, 3,4, 6, 8} B = {5, 7,9, 10, 11, 12}

We now show that the desired decomposition of M exists for any n = 2k, where
k 6= 2.

If k is odd, then one possible decomposition is given by

A = {1, 2, . . . , k}, B = {k + 1, k + 2, . . . , 2k}.

The sum of all the elements of A is 1

2
k(k+1), their arithmetic mean equals 1

2
(k+1),

which is a natural number. Since 1 6
1

2
(k + 1) 6 k, the arithmetic mean of all the

elements of A is an element of A. Similarly, the arithmetic mean 1

2
(3k + 1) of all

elements of the subset B is an element of B.
For k = 4 the existence of the decomposition is shown in the above table; for

even numbers k > 6 a possible decomposition is given by

A = {1, 2, . . . , k − 2, k, 1
2
(3k − 2)}, B =M \A.

We have k < 1

2
(3k − 2) 6 2k and 1

2
(3k − 2) is a natural number. The set A thus

contains k natural numbers from the set M . The sum of all the elements of A is

1 + 2 + · · ·+ (k − 2) + k + 1

2
(3k − 2) = 1

2
(k − 2)(k − 1) + k + 1

2
(3k − 2) = 1

2
k(k + 2).

Their arithmetic mean is 1

2
(k + 2), which is a natural number. Since 1 6

1

2
(k + 2) 6

k − 2, the arithmetic mean of all the elements of A is an element of A. Similarly one
shows that the arithmetic mean 3

2
k of all elements of B is an element of B.

b) Let A, B and C denote the desired subsets of the set M . Since they all have
the same number of elements, n must be divisible by 3, hence of the form n = 3k,
where k is a natural number. The sum s of all elements of M equals s = 1

2
3k(3k+1).

The sum of the three arithmetic means of the elements in the subsets A, B and C,
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respectively, is thus equal to s/k, that is, 3

2
(3k + 1). By the hypotheses, this sum

must be a natural number, thus k must be odd.
On the other hand, for numbers of the form n = 3k, where k is odd, a possible

decomposition is given by

A = {1, 2, . . . , k}, B = {k + 1, k + 2, . . . , 2k} and C = {2k + 1, 2k + 2, . . . , 3k}.
Indeed, the sum of all elements in A is 1

2
k(k + 1), hence their arithmetic mean is

1

2
(k + 1), which is a natural number; and since 1 6

1

2
(k + 1) 6 k, this arithmetic

mean is an element of A. Similarly we show that the arithmetic mean 1

2
(3k + 1) of

all the elements of B is an element of B, and the arithmetic mean 1

2
(5k+1) of all the

elements of C is an element of C.

Conclusion. In part a), the possible numbers n are all even n different from 4;
in part b), all odd n divisible by three.

5. In the plane a circle k is given with center S, and a point A 6= S. Find the locus
of all circumcenters of triangles ABC whose side BC is a diameter of k.

Solution. Let r be the radius of k. If A lies on k, then S is the circumcenter of
any of the triangles ABC, and the sought locus thus reduces to the singleton {S}.
Otherwise we distinguish two cases:

a) Let |AS| > r. Consider first the isosceles triangle ABC with basis BC, satis-
fying the conditions of the problem. The circumcenter O of this triangle is an interior
point of the segment AS and at the same time |AO| = |BO| = |CO|.

We claim that the sought locus O is the line p perpendicular to AS and passing
through O (Fig. 2).

A

B

C

SO

B′

C ′O′

k

p

Fig. 2

Consider an arbitrary triangle AB′C′, where B′C′ is a diameter of k, and denote
by O′ the intersection of the perpendicular bisector of its side B′C′ with the line p,
so that |O′B′| = |O′C′| (the point O′ lies on the perpendicular bisector of B′C′).
By the Pythagorean theorem in the right triangle C′O′S,

|O′B′| = |O′C′| =
√

|O′S|2 + r2 =
√

|OO′|2 + |OS|2 + r2.
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On the other hand, for the length of the segment O′A we have

|O′A| =
√

|AO|2 + |OO′|2 =
√

|BO|2 + |OO′|2 =
√

|OS|2 + r2 + |OO′|2.

Thus |O′A| = |O′B′| = |O′C′|, so the point O′ is the circumcenter of the triangle
AB′C′ and by construction it lies on the line p.

Conversely, for any point O′ of the line p it is possible to construct a diameter
B′C′ of the circle k which is perpendicular to the line O′S. By the previous argu-
ments, |O′A| = |O′B′| = |O′C′|, so we have found a triangle AB′C′ with the required
property whose circumcenter is O′.

b) Let |AS| < r. This case can be treated in an analogous manner. The center O
is now an interior point of the half-line opposite to SA. We arrive at the same result
as in the case a).

Conclusion. If A is not a point of k, the sought locus O is the line p perpendicular
to AS which passes through the circumcenter O of the isosceles triangle ABC whose
basis BC is the diameter of k perpendicular to AS. If A is a point of k, then O = {S}.
Other solution. For the given point A /∈ k consider a triangle with the required
properties. Denote by l the circumcircle of the triangle ABC (Fig. 3). Since S is the

A

B

C

S A′O

O′

k

l

p

Fig. 3

midpoint of the common chord BC of the circles k and l, the circle l intersects the
half-line opposite to SA at an interior point which we denote by A′. For the power
ml(S) of the point S with respect to l we then have

ml(S) = −|BS| · |CS| = −r2 = −|AS| · |A′S|, (1)
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where r is the radius of k. It follows that the distance |A′S|, hence also the position of
the point A′ on the half-line opposite to SA, is uniquely determined by the point A.
For all triangles ABC satisfying the conditions of the problem, the segment AA′ is
therefore one and the same. The circumcircles of all the triangles ABC thus have
a common chord AA′, so their centers lie on the perpendicular bisector p of the
segment AA′. In the case of an isosceles triangle ABC with basisBC, the segment AA′

is a diameter of l and its center O is the midpoint of AA′. The line p thus passes
through this point O and is perpendicular to AS.

Conversely, to each point O′ of the line p we find a triangle ABC with the
required properties, whose circumcenter coincides with O′. It is enough to construct
the diameter BC of the circle k which is perpendicular to the line O′S. For given A,
A′ and S we thus obtain points B and C for which the relation (1) holds. This means
that the points A, B, C and A′ lie on the same circle l. Since the point O′ is the
intersection of the chords AA′ and BC of this circle, which are not parallel, the point
O′ is the center of l, and thus is the circumcenter of the triangle ABC.

6. Find all functions f :Z → Z such that for all integers x, y,

f
(

f(x) + y
)

= x+ f(y + 2006).

Solution. Let f be an arbitrary function with the required property. Taking in turn
y = 0 and y = 1, we obtain the equalities

f
(

f(x)
)

= x+ f(2006), resp. f
(

f(x) + 1
)

= x+ f(2007), (1)

so upon subtracting

f
(

f(x) + 1
)

− f
(

f(x)
)

= f(2007)− f(2006).

The last relation can be rewritten as

f(z + 1)− f(z) = f(2007)− f(2006) (2)

for all z ∈ Z which belong to the range of f . However, this range is all of Z, as is
evident from any of the equalities (1).

The validity of (2) for all z ∈ Z means that the values of f on Z form an
arithmetic progression (infinite on both sides), so f must be given by a recipe of the
form f(z) = az + b for suitable constants a, b ∈ R. Substituting this into the original
equation for f the left-hand and the right-hand sides become

f
(

f(x) + y
)

= a
(

f(x) + y
)

+ b = a2x+ ay + ab+ b,

x+ f(y + 2006) = x+ a(y + 2006) + b = x+ ay + 2006a+ b.

These two expressions are equal for all x, y ∈ Z if and only if a2 = 1 and at the same
time 2006a = ab; that is, a = ±1 and b = 2006. The only solutions are thus the two
functions

f1(x) = x+ 2006 and f2(x) = −x+ 2006.
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First Round of the 56th Czech and Slovak

Mathematical Olympiad

(December 5th, 2006)

MO
1. Find all real numbers s for which the equation

4x4 − 20x3 + sx2 + 22x− 2 = 0

has four distinct real roots and the product of two of these roots is −2.

Solution. Assume that s is a number as above, and denote the four roots of the
equation by x1, x2, x3 and x4 in such a way that

x1x2 = −2. (0)

From the factorization

4x4 − 20x3 + sx2 + 22x− 2 = 4(x− x1)(x− x2)(x− x3)(x− x4)

we obtain, upon multiplying out the brackets and comparing the coefficients at like
powers of x on both sides, the familiar Vièta’s relations

x1 + x2 + x3 + x4 = 5, (1)

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 =
s

4
, (2)

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −11

2
, (3)

x1x2x3x4 = −1

2
. (4)

From the equalities (0) and (4) it follows immediately that

x3x4 =
1

4
.

Rewriting (3) as

(x1 + x2)x3x4 + (x3 + x4)x1x2 = −11

2

and substituting the known values for x1x2 and x3x4 we obtain

1

4
(x1 + x2)− 2(x3 + x4) = −11

2
,
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which together with the equation (1) forms a system of two linear equations for the
unknown sums x1 + x2 and x3 + x4. An easy calculation shows that its solution is
given by

x1 + x2 = 2 and x3 + x4 = 3.

Inserting all this into the equality (2) rewritten in the form

x1x2 + (x1 + x2)(x3 + x4) + x3x4 =
s

4
,

we find that necessarily s = 17.
Conversely, from the equalities

x1 + x2 = 2 and x1x2 = −2

it follows that the numbers x1,2 are the roots of the quadratic equation

x2 − 2x− 2 = 0, or x1,2 = 1±
√
3; (5)

and from the equalities

x3 + x4 = 3 and x3x4 =
1

4

it follows that the numbers x3,4 are the roots of the quadratic equation

x2 − 3x+
1

4
= 0, or x3,4 =

3

2
±

√
2. (6)

We see that x1,2,3,4 are indeed four mutually different real numbers which satisfy
the system (1)–(4) for the value s = 17, hence are the roots of the original equation
from the statement of the problem.

There is thus only one such number s, namely s = 17.

2. Consider the set {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160} and all its three-element
subsets. Decide which are more numerous: the three-element subsets for which
the product of their elements is greater than 2006, or those for which the product
of their elements if less than 2006?

Solution. The given set is exactly the set of all (natural) divisors of the number
160 = 25 · 5. We can group its elements into pairs in such a way that the product of
the numbers in each pair equals 160:

1 · 160 = 2 · 80 = 4 · 40 = 5 · 32 = 8 · 20 = 10 · 16.

This means that if A = {a, b, c} is a triple of mutually distinct divisors of 160, then
so is A′ = {160/a, 160/b, 160/c}.

The product abc of the elements of the triple A can be expressed in the form

2k5l, where k ∈ {0, 1, 2, . . . , 14}, l ∈ {0, 1, 2, 3}. (1)
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(The number 160 has only two divisors which are multiples of 25, hence in the prime
factorization of the number abc there cannot appear the factor 215.) It is not difficult
to see that the largest natural number of the form (1) which is less than 2006 is the
number 2000 = 24 · 53, and the least natural number which is of the form (1) and is
greater than 2006 is 2048 = 211 (the number 2006 itself is not of the form (1)). At the
same time, 2000 · 2048 = 1603.

Consequently, if the product abc of the triple A is less than 2006, then abc 6 2000
and the product 1603/(abc) of the corresponding tripleA′ is at least 1603/2000 = 2048.
Conversely, if the product abc of the triple A is greater than 2006, then abc > 2048 and
the product of the triple A′ is at most 1603/2048 = 2000. In other words, the three-
element subsets whose product of elements is less than 2006 are exactly as numerous
as the three-element subsets whose product of elements is greater than 2006.

3. A trapezoid ABCD is given, with right angle at the vertex A and with basis AB,
in which |AB| > |CD| > |DA|. Denote by S the intersection of the bisectors
of its interior angles at the vertices A and B, and by T the intersection of the
bisectors of the interior angles at the vertices C and D. Similarly we denote by
U , V the intersections of the bisectors of the interior angles at the vertices A and
D and at B and C, respectively.

a) Show that the lines UV and AB are parallel.

b) Show that the intersection E of the half-line DT with the line AB and the points
S, T and B are concyclic.

Solution. Being the intersection of the bisectors of the interior angles at the vertices
A and D of the given trapezoid, the point U has equal distances from the sides AB
and AD as well as from the sides AD and DC. This means that it has the same
distance also from the two bases AB, CD of the trapezoid ABCD. Similarly the
point V has the same distance from both bases. The lines UV and AB must therefore
be parallel, which settles part a).

Since the sum of interior angles at the vertices A and D, as well as at the vertices
B and C, is 180◦, the sum of the angles adjacent to the side AD of the triangle ADU is
equal to 90◦, as is the sum of the angles adjacent to the side BC of the triangle BCV .
This means that both these triangles are right (with right angles at the vertices U
and V , respectively, Fig. 1). The quadrangle UTV S is therefore chordal (from the
hypothesis |AB| > |CD| > |DA| it follows that the half-lines AU and CV do not

A B

CD

S

T

U V

Fig. 1
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meet, thus the points S and T lie in the opposite half-planes determined by the line
UV and the points U , T , V , and S lie on the circle in the order indicated).

As we already know, the lines UV , AB and CD are parallel, thus | 6 V UT | =
| 6 CDT | = 45◦. From the equality of the arc angles subtended by the chord TV of
the chordal quadrangle UTV S it therefore follows that | 6 V ST | = | 6 V UT | = 45◦.
This is also the magnitude of the arc angle TSB subtended by the chord TB in the
circumcircle of the triangle STB (Fig. 2). It remains to show that on this circle there
also lies the point E. This is obvious if E = T . Otherwise it is enough to check that
the magnitude of the angle TEB is either 180◦ − 45◦ or 45◦ according as the line BT
separates the points S, E or not; however, this follows immediately from the fact that
the line DT meets the basis AB at an angle of 45◦ (Fig. 2 and 3). This settles part b).

A B

CD

E

S

T

U V

Fig. 2

A B

CD

E

S

T

U V

Fig. 3
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Second Round of the 56th Czech and Slovak

Mathematical Olympiad

(January 23rd, 2007)

MO
1. Find the least possible area of a triangle ABC whose altitudes satisfy the inequal-

ities ha > 3 cm, hb > 4 cm and hc > 5 cm.

Solution. Denote by a, b, c the lengths of the sides of the triangle ABC. Its altitude
hb satisfies the inequality

c > hb,

since hb is the length of the shortest segment connecting the vertex B with a point
on the line AC. The area S of the triangle ABC therefore satisfies

S =
chc
2

>
hbhc
2

> 10 cm2.

If there exists a triangle ABC satisfying the conditions of the problem whose
area is exactly 10 cm2, then both inequalities S = 1

2
chc >

1

2
hbhc > 10 cm2 must

become equalities. This means that c = hb = 4 cm and at the same time hc = 5 cm.
The first equality means that the triangle is right, with the right angle at the vertex A.
The length of its cathetus AC then satisfies b = hc = 5 cm, while the length A of
its hypotenuse BC equals

√
41 cm. From the formula S = 1

2
aha we obtain for the

altitude ha

ha =
2S

a
=

20√
41
cm > 3 cm.

This means that the right triangle ABC with catheti of lengths b = 5 cm and c = 4 cm
satisfies the conditions of the problem.

The least possible area of the triangle ABC whose altitudes have the requested
properties is thus 10 cm2.

2. Let a, b be real numbers. Prove that if the equation

x4 − 4x3 + 4x2 + ax+ b = 0

has two distinct real roots such that their sum is equal to their product, then it
has no other real roots and a+ b > 0.

Solution. Assume that the equation

x4 − 4x3 + 4x2 + ax+ b = 0 (1)
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has two distinct real roots x1 and x2 such that x1 + x2 = x1x2 = p. Then the
polynomial on the left-hand side is divisible by the polynomial (x − x1)(x − x2) =
x2 − px+ p and has the decomposition

x4 − 4x3 + 4x2 + ax+ b = (x2 − px+ p)(x2 + rx+ s),

where r, s are real numbers. Multiplying out the expression on the right-hand side
in the last inequality and comparing the coefficients at the same powers of x on both
sides we get

−4 = −p+ r, (2)

4 = p+ s− pr, (3)

a = −ps+ pr, (4)

b = ps. (5)

From the relation (2) it follows that

r = p− 4. (6)

Substituting this into (3) we get

s = 4− p+ p(p− 4) = (p− 4)(p− 1). (7)

Since the quadratic equation x2 − px + p = 0 has two distinct real roots x1 and x2,
its discriminant is a positive number, so

p2 − 4p > 0. (8)

Adding up the equalities (4) and (5) and substituting for r from (6), we arrive at

a+ b = pr = p(p− 4) = p2 − 4p > 0,

which is what we wanted to prove.
For the discriminant D of the equation

x2 + rx+ s = 0

it follows from the formulas (6), (7) a (8) that

D = r2 − 4s = (p− 4)2 − 4(p− 4)(p− 1) = −3p(p− 4) = −3(p2 − 4p) < 0.

The last equation therefore has no real roots. The given equation (1) thus has no
other real roots than x1 and x2.
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3. Let M be an arbitrary interior point of the hypotenuse AB of a right triangle
ABC. Denote by S, S1, and S2 the circumcenters of the triangles ABC, AMC,
and BMC, respectively.

a) Show that the points M , C, S1, S2 and S lie on a circle.
b) For which position of the point M does this circle have the least radius?

Solution. a) Let α and β be the magnitudes of the interior angles at the vertices A
and B of the given right triangle ABC (Fig. 1). From the relation between the central

A B

C

MS

S1

S2

α β

2α

2β

Fig. 1

and the arc angle subtended by the common chord CM in the circumcircles k1 and k2
of the triangles AMC and BMC, respectively, we obtain

| 6 MS1C| + | 6 MS2C| = 2α+ 2β = 180◦.

The quadrangle CS1MS2 is thus chordal. Since the points M and C are axially
symmetric with respect to the perpendicular bisector of the segment CM , and since
S1 and S2 lie on this bisector, we further have

| 6 S1MS2| = | 6 S1CS2| = 90◦.

The circumcircle of the quadrangle CS1MS2 is thus the Thaletian circle over the
diameter S1S2. On the other hand, the points S and S1 lie on the perpendicular
bisector of the cathetus AC, and similarly the points S and S2 lie on the perpendicular
bisector of the cathetus BC of the given triangle. Consequently, | 6 S1SS2| = 90◦, and
the point S therefore lies also on the Thaletian circle circumscribed to the quadrangle
CS1MS2. (If M = S, then this assertion trivially also holds.) This proves part a).

b) The radius r of the circle (with chord CS) found in part a) clearly satisfies
2r > |CS|, with equality taking place if and only if CS is its diameter. Since the
circle with diameter CS passes through the midpoints of both catheti AC and BC,
the equality 2r = |CS| holds if and only if S1 is the midpoint of AC and S2 is the
midpoint of BC; this clearly corresponds to M being the foot of the altitude from the
vertex C onto the hypotenuse AB.

Another solution. a) Denote by P1 and P2 the midpoints of the segments AM
and BM , respectively (Fig. 2). Since the homothety with center M and coefficient 1

2
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A B

C

MS

S1

S2

O

P1 P2Q

Fig. 2

maps the segment AB onto the segment P1P2, it maps the midpoint S of AB into the
midpoint Q of P1P2, and at the same time as the image of the point S the point Q is
the midpoint of the segmentMS. The points P1, P2 are the orthogonal projections of
the points S1, S2 onto the hypotenuse AB, so the point Q is the orthogonal projection
of the center O of the circle over the diameter S1S2. By the Thaletian theorem this
circle contains S, since the lines S1S and S2S, being the perpendicular bisectors of
the two perpendicular catheti AC and BC, are perpendicular. From the symmetry
of this circle with respect to the line OQ it then follows that the point M also lies on
this circle, whence so does the point C (in view of the symmetry with respect to the
line S1S2). This proves part a).

b) The segment S1S2 and its orthogonal projection P1P2 satisfy |S1S2| > |P1P2| =
1

2
|AB|. The circumcircle of the quadrangle CS1MS2 thus has least diameter

1

2
|AB|,

if and only if S1S2 ‖ AB, which in view of the orthogonality of the segment CM
and its perpendicular bisector S1S2 takes place if and only if M is the foot of the
altitude from the vertex C in the triangle ABC. (The radius r of this circle then is
r = 1

4
|AB|.)

Another solution. a) Consider the similarity obtained upon composing the
rotation around C by the oriented (right) angleACB and the homothety with center C
and coefficient equal to the ratio |BC| : |AC| (Fig. 3). This similarity maps the points
A, B and M into B, B′ and M ′, respectively, where BC is the altitude onto the

A B

C

M

M ′

B′

S

S1

S2

Fig. 3
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hypotenuse AB′ in the right triangle ABB′, and the point M ′ lies on its cathetus
BB′. In view of the congruent angles AMC and BM ′C (or also in view of the right
angles MCM ′ and MBM ′), we see that the circumcircle of the triangle BMC is at
the same time also the circumcircle of the triangle BM ′C, so its center S2 is the
image of the point S1 in the above similarity (which maps the triangle AMC exactly
onto the triangle BM ′C). This means that the angle S1CS2 is right, hence so is the
angle S1MS2 (since the line S1S2 is the perpendicular bisector of the segment CM ).
Finally, the angle S1SS2 is also right (since its arms lie on the perpendicular bisectors
of the two perpendicular catheti AC and BC), which means that all three points C,
M , S lie on the Thaletian circle over the diameter S1S2.

This proves part a) of the problem. Part b) is solved in the same manner as in
the first solution.

4. Let natural numbers p, q (p < q) be given. Find the least natural number m with
the following property: the sum of all fractions whose denominators (in lowest
terms) are equal to m and whose values lie in the open interval (p, q) is at least
56(q2 − p2).

Solution. We show that the least m is 113 (independent of p, q). Clearly m > 1.
For arbitrary natural numbers c < d and m > 1, let Sm(c, d) denote the sum of
all fractions (in their lowest terms) which lie in the open interval (c, d) and whose
denominator is m. Then we have the inequality

Sm(c, c+ 1) 6
(

c+
1

m

)

+
(

c+
2

m

)

+ · · ·+
(

c+
m− 1

m

)

= (m− 1)c+
m− 1

2
,

with equality taking place if and only if all the numbers 1, 2, . . . ,m − 1 are coprime
with m, i.e. if and only if m is a prime.

For any given natural numbers p, q and m > 1 we have

Sm(p, q) = Sm(p, p+ 1) + Sm(p+ 1, p+ 2) + · · ·+ Sm(q − 1, q)

6

(

(m− 1)p+
m− 1

2

)

+
(

(m− 1)(p+ 1) +
m− 1

2

)

+ . . .

+
(

(m− 1)(q − 1) +
m− 1

2

)

=

= (m− 1)
(q − p)(p+ q − 1)

2
+ (m− 1)

q − p

2
=

= (m− 1)
q − p

2
(p+ q − 1 + 1) =

(m− 1)(q2 − p2)

2
,

that is,

Sm(p, q) 6
(m− 1)(q2 − p2)

2
. (9)

Moreover, equality takes place in (9) if and only if m is a prime. However, by hypoth-
esis

Sm(p, q) > 56(q2 − p2).

In view of (9) we see that necessarily 1

2
(m− 1) > 56, i.e. m > 113. As 113 is a prime,

the least possible m equals 113.
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Final Round of the 56th Czech and Slovak

Mathematical Olympiad

(March 18–21, 2007)

MO
1. A chess piece is placed on some square in an n × n (n > 2) square chessboard.

It then makes alternately “straight” and “diagonal” moves. “Straight” means to
a square having a common side with the original square. “Diagonal” means to
a square which has exactly one point in common with the original square. Find
all n for which there exists a sequence of moves, starting by a “diagonal” move
from the original square, such that the piece passes through all squares of the
chessboard, and through each square exactly once.

Solution. We first show that the problem has a solution for an arbitrary even n.
Indeed, placing the piece e.g. into any of the corners of the chessboard, it is possible
to pass through all the squares of the chessboard using the adjacent 2 × n blocks in
the manner indicated in Fig. 1 for n = 8. Here the sequence of moves corresponds to
the sequence of the connecting oriented segments. The argument for a general even
n is the same.

Fig. 1

A A A A

B B B

A A A A

B B B

A A A A

B B B

A A A A

Fig. 2

Now we show that for an odd n > 3 it is not possible to pass through all squares
of the chessboard in the manner indicated. Aiming at contradiction, let as assume
that for some odd n there exists a sequence of moves on the n×n chessboard satisfying
the conditions of the problem. Let us color all squares of the chessboard in a similar
manner as the ordinary 8×8 chessboard in such a way that the squares in the corners
are black (as in Fig. 2 for n = 7). Further, label all the black squares by the letters
A and B in such a way that no two black squares having exactly one point (vertex)
in common are labelled by the same letter. If the black squares in the corners are
labelled e.g. by the letters A, then the number of A-squares will clearly be greater by
n than the number of B-squares.
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Let us finally denote the squares of the chessboard which the piece in turn passes
through by 1, 2, 3, . . . , n2, and the k-th move of the piece by the notation k 7→ k +
1. If the square 1 is black, then the black squares are exactly those with numbers
1, 2, 5, 6, 9, 10, . . . ; at the same time, each of the (diagonal) moves 1 7→ 2, 5 7→ 6,
9 7→ 10, . . . connects black squares labelled by different letters. It follows that the
number of A and B squares differs by at most 1, which is a contradiction. Similarly,
if the starting square 1 is white, the black squares are exactly those with numbers
3, 4, 7, 8, 11, 12, . . . , connected by the (diagonal) moves 3 7→ 4, 7 7→ 8, 11 7→ 12, . . . ,
and the same contradiction is obtained.

The solution are therefore all even n > 2.

2. In a chordal quadrangle ABCD denote by L, M the incenters of the triangles
BCA and BCD, respectively. Denote further by R the intersection of the per-
pendiculars from the points L and M onto the lines AC and BD, respectively.
Show that the triangle LMR is isosceles.

Solution. Let us denote by H the intersection of the bisectors of the interior angles
at the vertices A and D in the triangles BCA and BCD (Fig. 3). Then H is the
midpoint of the corresponding arc BC of the circumcircle k of the quadrangle ABCD
(of the arc not containing the vertices A and D). Denote ǫ = | 6 BAH | = | 6 CAH | =

A

B C

D

H

L
M

PQ
R

k

ǫ ǫ

ǫ

ǫ ǫ

φ
φ

Fig. 3

| 6 BDH | = | 6 CDH | = | 6 CBH | and φ = | 6 ABL| = | 6 CBL|. Then

| 6 BLH | = | 6 BAL|+ | 6 ABL| = ǫ+ φ = | 6 LBH |.

The triangle HLB is thus isosceles with basis LB, whence |HB| = |HL|. Similarly
|HC| = |HM |. And since |HB| = |HC|, we also have |HL| = |HM |, so the triangle
HML is isosceles and | 6 HLM | = | 6 HML|.
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Denote further by P the orthogonal projection of the point L onto the line AC,
and by Q the orthogonal projection of the point M onto the line BD (the point R in
question is thus the intersection of the lines LP and MQ). Since the right triangles
APL and DQM have congruent angles at the vertices A and D, the angles PLA
and QMD at the vertices L and M are also congruent. From this and from the
equality | 6 HLM | = | 6 HML| it therefore follows that | 6 PLM | = | 6 QML|. This
means that the triangle LMR is isosceles, which is what we wanted to prove.

3. Denote by N the set of all natural numbers and consider all functions f : N → N

such that for any x, y ∈ N,

f
(

xf(y)
)

= yf(x).

Find the least possible value of f(2007).

Solution. Let f be any function with the given property. We claim first of all that
f is injective. Indeed, if f(y1) = f(y2), then for all natural x

y1f(x) = f
(

xf(y1)
)

= f
(

xf(y2)
)

= y2f(x),

and as f(x) is a natural number it follows that y1 = y2.
Taking x = 1 in the given equation we get in particular f

(

f(y)
)

= yf(1), which

for y = 1 becomes f
(

f(1)
)

= f(1). As f is injective, this means that

f(1) = 1, (1)

so that for all natural y
f
(

f(y)
)

= y. (2)

The last relation implies, in particular, that the range of the function f is the
entire set N. For any natural z we can thus find y such that y = f(z) and at the same
time f(y) = z; using again the given equation, we therefore get

f(xz) = f
(

x(f(y)
)

= yf(x) = f(z)f(x).

An easy induction argument then implies that

f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn) (3)

for any natural numbers n and x1, x2, . . . , xn.
Next, we show that the image f(p) of an arbitrary prime p is also a prime. Assume

that f(p) = ab, where a and b are natural numbers different from 1. By (2) a (3),
then

p = f
(

f(p)
)

= f(ab) = f(a)f(b).

Since f is injective and f(1) = 1, we must have f(a) > 1, f(b) > 1, contradicting the
hypothesis that p is a prime.

Since the decomposition of the number 2007 into prime factors is 2007 = 32 ·223,
we thus get by (3)

f(2007) = f(3)2f(223),
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where both f(3) and f(223) are primes. If f(3) = 2, then f(2) = 3 by (2) so the
least possible value for f(223) is 5, whence f(2007) > 20. If f(3) = 3, then the least
possible value of f(223) is 2 and f(2007) > 18. It is easy to see that for any other
choice of the values f(3) a f(223) we get f(2007) > 18.

We now show that there exists a function satisfying the conditions of the problem
and such that f(2007) = 18. Define f in the following manner: For any natural
number x, which we write as x = 2k223mq, where k and m are nonnegative integers
and q is a natural number coprime with 2 and 223, set

f(2k223mq) = 2m223kq.

Then f(2007) = f(223 · 32) = 2 · 32 = 18. We check that this function f indeed has
the required property. Let x = 2k1223m1q1 and y = 2k2223m2q2 be arbitrary natural
numbers written in the above form. Then

f
(

xf(y)
)

= f
(

2k1223m1q1f(2
k2223m2q2)

)

= f(2k1+m2223m1+k2q1q2) =

= 2k2+m1223m2+k1q1q2

and at the same time

yf(x) = 2k2223m2q2f(2
k1223m1q1) = 2k2+m1223m2+k1q1q2.

The least possible value of f(2007) is thus 18.

4. The set M contains all natural numbers from 1 to 2007 (inclusive) and has the
following property: if n ∈ M , then M contains all the members of the arith-
metic progression with first member n and difference n+1. Decide whether there
must always exist a number m such that M contains all natural numbers greater
than m.

Solution. The answer is in the negative; a counterexample is given by the set

M = N \
{

a : a+ 1 is a prime greater than 2008
}

,

which clearly contains all natural numbers from 1 to 2007. At the same time, a general
member of the arithmetic progression

(

an
)∞

n=1
with first member a1 = n ∈ M and

difference d = n+ 1 has the form

ak = a1 + (k − 1)d = n+ (k − 1)(n+ 1) = (n+ 1)k − 1,

which implies that ak+1 = (n+1)k can never be a prime, for any k > 1; thus ak ∈M
for all k (no matter whether ak 6 2007 or ak > 2008). Since there are infinitely many
primes, there are also infinitely many numbers not lying in the set M .
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5. An acute triangle ABC is given such that |AC| 6= |BC|. In the interior of its
sides BC and AC consider the points D and E, respectively, for which ABDE is
a chordal quadrangle. Denote by P the intersection of its diagonals AD and BE.
Show that if the lines CP and AB are perpendicular, then P is the orthocenter
of the triangle ABC.

Solution. Denote φ = | 6 BAD| and ψ = | 6 ABE| (Fig. 4). From the equality
| 6 AEB| = | 6 ADB| of the angles subtending the chord AB in the chordal quad-

A B

C

D
E

C0

P

x y

p

α βφ ψ

Fig. 4

rangle ABDE we thus obtain (using the standard notation for the angles in the
triangle ABC)

α+ ψ = β + φ. (1)

Denote by C0 the foot of the altitude from the vertex C, by hc the length of this
altitude CC0, and by x, y and p the lengths of the corresponding segments AC0, BC0

and PC0, respectively (Fig. 4); thus

tanφ =
p

x
, tanψ =

p

y
,

tanα =
hc
x
, tanβ =

hc
y
.

(2)

If the point P is not the orthocenter (i.e. the angle α+ψ is not right), we can use (1)
and write

tan(α+ ψ) = tan(β + φ).

Using the well-known addition formula for the tangent, it follows from (2) that (using
also the equality tanα tanψ = tanβ tanφ, which likewise follows from (2))

hc
x

+
p

y
=
hc
y

+
p

x
or

(p− hc)(x− y) = 0.

Since p < hc and x 6= y in view of the hypothesis we have made, the last equality
cannot hold. Thus α+ψ = 90◦ and the point P is the orthocenter, which is what we
needed to prove.
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6. Find all ordered triples (x, y, z) of mutually distinct real numbers which satisfy
the set equation

{x, y, z} =

{

x− y

y − z
,
y − z

z − x
,
z − x

x− y

}

.

Solution. If x, y, z are three mutually distinct real numbers, then

u =
x− y

y − z
, v =

y − z

z − x
, w =

z − x

x− y
(1)

are clearly numbers different from 0 and −1 whose product is equal to 1. This property
must therefore be possessed also by the values x, y, z from any such triple. We will
thus assume from now on that

x, y, z ∈ R \ {0,−1}, x 6= y 6= z 6= x, xyz = 1. (2)

Since the given set relation is the same for each of the ordered triples (x, y, z),
(z, x, y) and (y, z, x), we will assume in addition to (2) that x > max{y, z}, and will
distinguish two cases, according as y > z or z > y. Let us introduce the following
notation for intervals: I1 = (0,∞), I2 = (−1, 0), I3 = (−∞,−1).

The case of x > y > z. For the fractions (1) we clearly have u ∈ I1, v ∈ I2
and w ∈ I3, so u > v > w. The given set equation can thus be fulfilled only when
u = x, v = y and w = z. Upon substituting from (1) and an easy manipulation we
arrive at the equations

xy + y = yz + z = zx + x, where x ∈ I1, y ∈ I2, z ∈ I3. (3)

In view of the condition xyz = 1 from (2) we can replace the term zx in the equation
xy + y = zx + x by 1/y. This leads to

xy + y =
1

y
+ x⇒ x(y − 1) =

1− y2

y
⇒ x = −1 + y

y
⇒ y = − 1

1 + x
.

(We have used the fact that, as y ∈ I2, necessarily y 6= 1.) From the last formula it
follows that the value of the first expression in the system (3) is −1, so from the fact
that the second expression equals −1 we obtain

z = − 1

1 + y
= − 1

1− 1

1 + x

= −1 + x

x
.

But then also the third expression in (3) is equal to −1. Any solution of our problem
(in the current case of x > y > z) must therefore be of the form

(x, y, z) =
(

t,− 1

1 + t
,−1 + t

t

)

, (4)
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where t ∈ I1 is arbitrary (in view of (3), we do not need to worry about checks).
From the procedure used it also follows that taking t ∈ I2 (or t ∈ I3, respectively)
in the formula (4) we get all solutions of our problem satisfying z > x > y (y > z > x),
so that it is not necessary to list the cyclic permutations of the triples from (4) in our
final answer below.

The case of x > z > y. Now we have for the fractions (1) u ∈ I3, v ∈ I1
and w ∈ I2, so v > w > u, and the set equation in question is satisfied only if u = y,
v = x and w = z. Upon substituting the fractions from (1) we arrive at the system

x− y = y(y − z), y − z = x(z − x), z − x = z(x− y). (5)

Adding up these three equations yields

0 = y(y − z) + x(z − x) + z(x− y) = (y − x)(x+ y − 2z),

which in view of x 6= y implies that z = 1

2
(x+ y). Substituting this back into (5) we

find (taking again into account that x 6= y) that the only solution is x = 1, y = −2
and z = − 1

2
. The same triple also forms the (unique) solution satisfying y > x > z,

as well as the (unique) solution for which z > y > x.

Answer : The solutions are all ordered triples (4), where t ∈ R \ {0,−1}, and the
three triples (x, y, z) of the form

(

1,−2,−1

2

)

,
(

−1

2
, 1,−2

)

,
(

−2,−1

2
, 1
)

.
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Czech-Slovak-Polish Match

Bílovec, June 25–26, 2007

MO
1. Find all polynomials P with real coefficients for which the equality

P (x2) = P (x) · P (x+ 2)

holds for every real number x.

Solution. The constant polynomial P (x) = c is a solution if and only if c = c2, thus
the polynomials P (x) = 0 and P (x) = 1 are solutions of the problem.

We claim that the only polynomial of a positive degree n which solves the equation
is of the form P (x) = (x− 1)n. In view of the identity (x2 − 1)n = (x− 1)n(x+ 1)n,
the latter is clearly a solution for any n > 1.

If axn (a 6= 0) is the leading term of a polynomial P (x) of a positive degree n,
then ax2n is the leading term of the polynomial P (x2) and a2x2n is the leading term of
the polynomial P (x)P (x+2). If P satisfies the given equality, comparing the leading
order terms thus gives a = a2, hence a = 1. The polynomial P can therefore be
written in the form P (x) = (x − 1)n +Q(x), where Q is either identically zero, or is
a nonzero polynomial of degree k, where 0 6 k < n. Comparing the polynomials

P (x2) = (x2 − 1)n +Q(x2),

P (x)P (x+ 2) = [(x− 1)n +Q(x)][(x+ 1)n +Q(x+ 2)]

we obtain (upon multiplying out the brackets and cancelling the terms (x2 − 1)n

on both sides) the equality

Q(x2) = (x− 1)nQ(x+ 2) + (x+ 1)nQ(x) +Q(x)Q(x+ 2).

The zero polynomial Q clearly satisfies this relation. For a nonzero Q of degree k < n,
however, Q(x2) is a polynomial of degree 2k, while on the right-hand side of the last
equation there is a polynomial of degree n+k (whose leading term is 2bxn+k, if bxk is
the leading order term of the polynomial Q(x)). Since 2k < n+k, this is not possible.

Conclusion. The solutions are the constant polynomials P (x) = 0 and P (x) = 1
and the polynomial P (x) = (x− 1)n for any natural number n.

2. Let a1 = a2 = 1 and ak+2 = ak+1 + ak for any k ∈ N (the Fibonacci sequence).
Prove that for any natural number m there exists an index k such that the number
a4k − ak − 2 is divisible by m.

Solution. All the congruences and remainder classes below are meant modm. We ob-
tain the desired congruence relation a4k − ak − 2 ≡ 0 as a consequence of the simpler
relation ak ≡ −1.
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The sequence of remainder classes of the numbers ak has the following property:
the remainder classes of any two consecutive elements ak, ak+1 determine uniquely the
remainder classes of all subsequent elements ai (i > k + 1), as well as of all elements
ai (i < k) preceding them. By the standard argument, based on the fact that the
number of ordered pairs of remainder classes is m2, hence finite, it follows that the
sequence of remainder classes of the elements ai is periodic, starting already from its
first member. Thus there exists a number p > 0 (depending on the given modulus m)
such that ai ≡ ai+p for any index i. Unless m = 1 (then the problem is trivial),
clearly p > 1. Since a1 ≡ a2 ≡ 1, we also have ap+1 ≡ ap+2 ≡ 1, whence ap ≡ 0 and
ap−1 ≡ −1, so we can take k = p− 1 and the proof is finished.

3. Let k be the circumcircle of a given convex quadrilateral ABCD with the property
that the half-lines DA and CB meet at a point E for which |CD|2 = |AD| · |ED|
holds. Let us denote by F (F 6= A) the point of intersection of the circle k with the
perpendicular to ED at A. Prove that the segments AD and CF are congruent
if and only if the circumcenter of the triangle ABE lies on ED.

Solution. Clearly DF is a diameter of k. First we show that under the given condi-
tions the vertex C cannot lie in the half-plane DFA.

If the vertices B, C are points on the subarc DA of the arc DAF (Fig. 1) then
the angles DCB and DBA are obtuse, hence |DC| < |DB| < |DA| < |DE|, which
contradicts to the equality |CD|2 = |AD| · |ED|.

If the vertices B, C are points on the subarc AF of the arc DAF (Fig. 2) the
angle BAE is acute and | 6 DBE| = 180◦ − | 6 DBC| 6 90◦, so the possible other
meeting point B′ of the half-line DB with the circumcircle of the triangle AEB lies
in the segment DB. Hence |DC| > |DB| > |DB′|. This means that the equality
|CD|2 = |AD| · |ED| cannot hold as |AD| · |ED| = |DB| · |DB′| (which is the power
of D with respect to the circumcircle of the triangle AEB).

A

B
C

D E

Fk

Fig. 1

A

B

B′

C

D E

Fk

l

Fig. 2

We have shown that the vertex C of the given quadrangle does not lie in the
half-plane FDA, hence |FC| = |DA| if and only if DAFC is a rectangle, i.e. if and
only if CA is a diameter of the circle k, which is equivalent to the angle CBA being
right, which is in turn equivalent to the triangle AEB being right with the right angle
at B, i.e. to the circumcenter of the triangle AEB being the midpoint of AE.
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4. For any real number p > 1 let us consider the set of all real numbers x with

p < x <

(

2 +

√

p+
1

4

)2

.

Prove that from such a given set one can select four mutually different natural
numbers a, b, c, d with ab = cd.

Solution. The numbers a = (k− 1)k, b = (k+1)k, c = (k− 1)(k+1), d = k2 clearly
satisfy the equality ab = cd and the inequalities a < c < d < b for any k > 1. Let thus
k be the least natural number for which p < a, i.e. p < (k−1)k (for a given p). We will
show that for this k necessarily b = (k+1)k 6 p+4+ 2

√
4p+ 1, which is evidently a

number by 1

4
smaller than the upper bound of the interval in our problem, so we will

be done.
In view of the choice of the number k we have p > (k − 2)(k − 1). Solving this

quadratic inequality yields the estimate

k 6
3

2
+

√

p+
1

4
,

from which it already follows that

b = (k + 1)k 6

(

5

2
+

√

p+
1

4

)

·
(

3

2
+

√

p+
1

4

)

=
15

4
+ 4

√

p+
1

4
+

(

p +
1

4

)

= p+ 4+ 2
√

4p+ 1.

5. Find for which

n ∈ {3 900, 3 901, 3 902, 3 903, 3 904, 3 905, 3 906, 3 907, 3 908, 3 909}

the set {1, 2, 3, . . . , n} can be partitioned into (disjoint) triples in such a way that
one of the three numbers in any triple is the sum of the other two.

Solution. From the possibility of partitioning the set into disjoint triples it follows
that 3 | n. In each triple {a, b, a+ b} the sum of its elements is 2(a+ b), hence an even
number; thus also the sum of all numbers from 1 to n must be even, i.e. the product
n(n+ 1) must be divisible by four. Altogether it therefore follows that the number n
has to be of the form either 12k or 12k + 3; from the given set of numbers, this is
satisfied only for n = 3900 and n = 3903.

In the next paragraph we describe a construction how to produce, starting from
a decomposition satisfying the given condition for some n = k, a decomposition
of the same kind for n = 4k and n = 4k + 3. This guarantees that the required
decompositions for n = 3900 and n = 3903 indeed exist, in view of the decreasing
sequence

3 900 → 975 → 243 → 60 → 15 → 3
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(instead of 3 900 one can start also with 3 903) and the trivial decomposition for n = 3
(from which we in turn construct the decompositions for n = 15, n = 60 etc. up to
n = 3900 or n = 3903).

From a decomposition of the set {1, 2, . . . , k} satisfying the given conditions
we first produce a similar decomposition for the set of the first k even numbers
{2, 4, . . . , 2k} (simply by multiplying all the numbers in the triples by two). In the
case of n = 4k we partition the remaining numbers

{1, 3, 5, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , 4k − 1, 4k}

into the k triples {2j − 1, 3k − j + 1, 3k + j}, where j = 1, 2, . . . , k. They are shown
in the columns of the table below.





1 3 5 . . . 2k − 3 2k − 1
3k 3k − 1 3k − 2 . . . 2k + 2 2k + 1

3k + 1 3k + 2 3k + 3 . . . 4k − 1 4k





In the case of n = 4k + 3 we partition the remaining numbers

{1, 3, 5, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , 4k + 2, 4k + 3}

into the k + 1 triples {2j − 1, 3k + 3 − j, 3k + j + 2}, where j = 1, 2, . . . , k + 1; these
are again shown in the columns of the table below.





1 3 5 . . . 2k − 1 2k + 1
3k + 2 3k + 1 3k . . . 2k + 3 2k + 2
3k + 3 3k + 4 3k + 5 . . . 4k + 2 4k + 3





This completes the proof of the fact that the solution of the given problem are
the numbers n = 3900 and n = 3903.

6. Let ABCD be a convex quadrilateral. A circle passing through the points A and
D and a circle passing through the points B and C are externally tangent at a
point P inside the quadrilateral. Suppose that

| 6 PAB|+ | 6 PDC| 6 90◦ and | 6 PBA|+ | 6 PCD| 6 90◦.

Prove that |AB|+ |CD| > |BC|+ |AD|.

Solution. If P is a common point of the given circles, the familiar properties of the
angles subtending a chord at a point on a given circle and at its center imply that P
is also the point of tangency if and only if (Fig. 3)

| 6 ADP |+ | 6 BCP | = | 6 APB|. (1)
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C

D

P

Fig. 3

Consider now the circumcircles of the triangles ABP and CDP and assume for
the moment that they meet also at another point Q (Q 6= P ).

Since the point A lies outside the circle BCP , we have | 6 BCP |+| 6 BAP | < 180◦.
Therefore the point C lies outside the circle ABP . Analogously, D also lies outside
that circle. It follows that P and Q lie on the same arc CD of the circle CDP .

Analogously, the points P and Q lie on the same arc AB of the circle ABP . Thus
the point Q lies either inside the angle BPC or inside the angle APD. Without loss
of generality assume that Q lies inside the angle BPC (Fig. 4). Then

| 6 AQD| = | 6 PQA|+ | 6 PQD| = | 6 PBA|+ | 6 PCD| 6 90◦, (2)

under the condition of the problem.

A
B

C

D

P Q

Fig. 4

In the chordal quadrilateralsAPQB andDPQC, it follows from the hypothesis of
the problem that the angles at the vertices A andD are acute. Thus the corresponding
opposite angles at the vertex Q are obtuse. This implies that Q lies not only inside the
angle BPC but in fact inside the triangle BPC, hence also inside the quadrilateral
ABCD.

From the properties of the angles in the two chordal quadrilaterals just mentioned
it thus follows that

| 6 BQC| = | 6 PAB|+ | 6 PDC|,
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so by the hypothesis of the problem

| 6 BQC| 6 90◦. (3)

Moreover, since | 6 PCQ| = | 6 PDQ|, we get by (1)

| 6 ADQ|+ | 6 BCQ| = | 6 ADP |+ | 6 PDQ|+ | 6 BCP | − | 6 PCQ|
= | 6 ADP |+ | 6 BCP |.

The last sum is equal to | 6 APB|, according to the observation (1) applied to T = P .
Since also | 6 APB| = | 6 AQB|, we obtain

| 6 ADQ|+ | 6 BCQ| = | 6 AQB|.

This however means, as we have seen in the beginning, that the circles BCQ and
DAQ are externally tangent at Q, contradicting our initial assumption that P 6= Q.
Thus it has to be the case that the circumcircles of the two triangles ABP and CDP
have only the single point P in common, for which, by the inequalities (2) and (3),
it is further true that the angles APD and BPC are not obtuse.

Consider now the half-discs with diameters BC and DA constructed inwardly to
the quadrilateral ABCD. Since the angles APD and BPC are not obtuse, these two
half-discs lie entirely inside the circles BQC and AQD; and since these two circles are
externally tangent, the two half-discs cannot have any other point than P in common.
Denoting by M and N the midpoints of the sides BC and DA, respectively, it thus
follows that |MN | > 1

2
(|BC| + |DA|).

On the other hand, sinceMN = 1

2
(BA+CD), we have |MN | 6 1

2
(|AB|+ |CD|).

Thus indeed |AB|+ |CD| > |BC|+ |DA|, as claimed.
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