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MO
1. Let n be the sum of all ten-digit numbers, which contain every decimal digit from

zero to nine. Determine the remainder of n when divided by 77.
(Pavel Novotný)

Solution. We determine the value of n first. We count for each non-zero digit the
number of its occurrences in the summands (giving n altogether) in the place of units,
tens, hundreds, . . . This enables us to evaluate the “contribution” of each digit to
the sum, and thus n itself. Every digit is on each of the places 9!− 8! times (we have
to subtract the “numbers” starting with zero) except for the first place, where it is 9!
times (we do not have to subtract anything). In total we get

n = (1 + 2 + · · ·+ 9)(9!− 8!)(108 + 107 + · · ·+ 10 + 1) + (1 + 2 + · · ·+ 9) · 9! · 109

= 45(8 · 8! · 111 111 111 + 9 · 8! · 109) = 45 · 8! · 9 888 888 888.

Thus n is divisible by 7 and by the criterion of divisibility by 11 is

9 888 888 888 ≡ 8− 8 + 8− 8 + · · ·+ 8− 9 ≡ −1 (mod 11).

Further 8! ≡ 5 (mod 11). In total

n ≡ 45 · 8! · 9 888 888 888 ≡ 1 · 5 · 10 ≡ 6 (mod 11).

Finally n ≡ 28 (mod 77).

2. There are several people on a party. Every two persons, which do not know each
other, have exactly two common friends. A and B know each other but do not
have any common friend. Show that A and B have the same number of friends
at the party. Show that it could be exactly six persons on the party. (As usual the
relation of friendship is symmetric, and “know someone” = “be friend with”.)

(Vojtech Bálint)

Solution. Let MA be the set of friends of A, MB the set of friends of B (Fig. 1). We

A

MA
MB

B

. . . . . .

Fig. 1
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show |MA| > |MB |. No person from MA knows B (otherwise A and B would have
common friend). That is everyone from MA, let’s say X, has two common friends
with B. One of them is A and the other one has to be from MB (it is the set of all
B’s friends), let us call him (her) XB . Then for any X, Y ∈ MA we have XB 6= YB

(otherwise X, Y , and B would be three common friends of XB and A; again, no
person from MB knows A). Thus MA > MB . From symmetry MB = MA.

The appropriate situation for the six persons is on the following diagram:

A B

3. Let S be the incenter, T the centroid, and V the orthocenter of a triangle.
a) Show, that S is an interior point of the segment TV .
b) Determine the ratio of the side lengths of the triangle, if S is the midpoint

of TV . (Jaromír Šimša)

Solution. a) Let A, B, and C be the vertices of the triangle with the basis BC Let
H be the midpoint of BC, and further let a = BC, b = AC = AB, β = γ = 90◦− 1

2α.
Further let P , D, and M be intersections of the height, the bisector, and the median
from B with AC, respectively.

If b > a (see Fig. 2a), then β > 60◦ and

6 CBP = 90◦ − β < 90◦ − 60◦ = 30◦ < 1
2β = 6 CBD,

thus CP < CD. As well known, the bisector from B divides the opposite side in
the ratio a/b, that is CD/AD = a/b < 1, and CD < 1

2CA = CM . Summing up,
CP < CD < CM and D is inside MP .

If a > b (see Fig. 2b), then β < 60◦ and similarly as in the previous case 6 CBP =
90◦ − β > 90◦ − 60◦ = 30◦ > 1

2β = 6 CBD, CD/AD = a/b > 1, thus CP > CD >
1
2CA = CM , and D is inside MP again.

B C
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Fig. 2a
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b) First we express TH, SH, V H using a, b, c, and v (the altitude from A of the
triangle ABC from A).

From the properties of the centroid we have TH = 1
3v.

SH is the inradius, thus SABC = % · s with s = 1
2 (a+ 2b).

SH = % =
SABC

s
=

1
2av

1
2 (a+ 2b)

=
av

a+ 2b
.

The triangles BVH and ABH are similar (both are right-angled with 6 V BH =
90◦ − β = 1

2α = 6 BAH). Thus V H/BH = BH/AH and

V H =
BH2

AH
=
a2

4v
.

Now S, T , V lie on the ray HA therefore TS = SV is equivalent to

TH + V H = 2SH,

After easy manipulation we get (using v2 = b2 − 1
4a

2):

(2a− b)(a− b) = 0.

There is a 6= b (according the statement of the problem), thus S is the midpoint
of the segment TV if and only if 2a = b, that is the ratio of the side lengths is 1 : 2 : 2.

4. Let p, q be two different primes, let m and n be positive integers such that the
sum

mp− 1
q

+
nq − 1
p

is integer. Prove
m

q
+
n

p
> 1.

(Jaromír Šimša)

Solution. We rewrite:

mp− 1
q

+
nq − 1
p

=
p(mp− 1) + q(nq − 1)

pq
.

The last fraction is a positive integer, thus p | nq − 1 and q | mp − 1, that is pq |
mp+ nq − 1. Therefore mp+ nq > pq which is the inequality in question.
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5. There are two circles, both with the radius equal to the distance of their centers.
Let A and B be intersections of these circles. We choose C on k2 such, that the
segment BC meets again k1 in L. Line AC meets k1 again in K. Prove, that the
line of the median through C of the triangle KLC passes through a fixed point,
which is independent of the position of C. (Tomáš Jurík)

Solution. Let S1, S2 be the centers of k1, k2 respectively. Let P be on k1 such that
PS2 is a diameter of k1. We show, that P is the sought point, namely we prove that
the midpoint of KL is collinear with P and C.

Let Q be the point reflection of S1 with respect to S2. That is S1Q is a diameter
of k2 and the angle S1BQ is right, thus BQ is tangent to k1. According to the
statement of the problem, C has to be inside the shorter arc AQ of k2. If we consider
the reflection along S1S2 we see that PA is tangent to k1 as well, that is K is inside
the shorter arc PA of k1 (Fig. 3).

P

B

A

C

K

L

QS1
S2

k1 k2

Fig. 3

Since k1 and k2 have the same radii, the triangles S1S2A and S1S2B are equi-
lateral and 6 BS1A = 120◦. The corresponding inscribed angle BPA is therefore 60◦.
Moreover A and B are symmetric along PS2, thus PA = PB and APB is equilateral.
Any angle that subtends AP , PB, or BA in k1 (or AB in k2 as well) is therefore 60◦.
Thus

6 ACB = 60◦, 6 PLB = 60◦, 6 PKA = 120◦.

The equality of the first two angles implies PL and KC are parallel, the sum
of the first and third angle is 180◦ therefore PK and LC are parallel as well. Thus
PLCK is parallelogram and since diagonals in any parallelogram half each other we
are done.

6. Find the greatest real k such that

2(a2 + kab+ b2)
(k + 2)(a+ b)

>
√
ab

holds for any positive real a and b. (Ján Mazák)
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Solution. If k = 2 then the inequality is equivalent to 1
2 (a+ b) >

√
ab (which holds),

therefore k > 2. For k > 2 we have k + 2 > 0

2(a2 + kab+ b2) > (k + 2)(a+ b)
√
ab,

the division by b2 gives

2
(a2

b2
+ k

a

b
+ 1
)

> (k + 2)
(a
b

+ 1
)√a

b
.

Denote
√
a/b = x. The value of x can be any positive number. Thus the problem

is equivalent to find greatest k, such that

2(x4 + kx2 + 1) > (k + 2)(x2 + 1)x

holds for any positive x. We get

k
(
(x2 + 1)x− 2x2

)
6 2
(
x4 + 1− (x2 + 1)x

)
,

k(x3 − 2x2 + x) 6 2(x4 − x3 − x+ 1),
kx(x2 − 2x+ 1) 6 2

(
x3(x− 1)− (x− 1)

)
,

kx(x− 1)2 6 2(x− 1)2(x2 + x+ 1).

For x = 1 the inequality holds. If x 6= 1 then the division by positive number
x(x− 1)2 gives

k 6
2(x2 + x+ 1)

x
= 2 + 2

(
x+

1
x

)
. (1)

If x 6= 1 then the values of x+ 1/x fill the whole interval (2,∞), the RHS can be any
number in (6,∞), consequently k > 6.
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First Round of the 61st Czech and Slovak
Mathematical Olympiad
(December 6th, 2011)

MO
1. In the domain of real numbers solve the following system of equations

y + 3x = 4x3,

x+ 3y = 4y3.

(Pavel Calábek)

Solution. The sum and the difference of the equations gives

4(x+ y) = 4(x3 + y3),
2(x− y) = 4(x3 − y3),

or
x+ y = (x+ y)(x2 − xy + y2),

1
2 (x− y) = (x− y)(x2 + xy + y2).

(1)

If x + y = 0, then the substitution y = −x into the original first equation gives
2x = 4x3, or x(2x2 − 1) = 0. This equation has three roots x = 0 and x = ± 1

2

√
2,

thus we get three solutions (0, 0),
(

1
2

√
2,− 1

2

√
2
)
, and

(
− 1

2

√
2, 1

2

√
2
)
.

If x− y = 0, then substituting y = x we get 4x = 4x3, or x(x2 − 1) = 0 and we
get two new solutions (1, 1) and (−1,−1).

Now let x+ y and x− y be both non-zero. Then

1 = x2 − xy + y2,
1
2 = x2 + xy + y2.

(2)

The sum and the difference of the equations is x2 + y2 = 3
4 and xy = − 1

4 , thus

(x+ y)2 = x2 + y2 + 2xy = 3
4 −

1
2 = 1

4 ,

and x + y = 1
2 or x + y = − 1

2 , it means x, y are then the solutions of the quadratic
equations

t2 − 1
2 t−

1
4 = 0, resp. t2 + 1

2 t−
1
4 = 0

with roots t1,2 = 1
4 ±

1
4

√
5, resp. t3,4 = − 1

4 ±
1
4

√
5, and we get four other solutions:

(t1, t2), (t2, t1), (t3, t4), (t4, t3).

Conclusion. The solutions of the problem are

(0, 0),
(

1
2

√
2,− 1

2

√
2
)
,
(
− 1

2

√
2, 1

2

√
2
)
, (1, 1), (−1,−1),(

1
4 + 1

4

√
5, 1

4 −
1
4

√
5
)
,
(

1
4 −

1
4

√
5, 1

4 + 1
4

√
5
)
,(

− 1
4 + 1

4

√
5,− 1

4 −
1
4

√
5
)
,
(
− 1

4 −
1
4

√
5,− 1

4 + 1
4

√
5
)
.

(3)
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2. Let AB and CD be the basis and M the midpoint of the diagonal AC of a
trapezoid ABCD. Prove that if ABM and ACD have the same area then DM
and BC are parallel. (Jaroslav Švrček)

Solution. BM is the median of ABC (Fig. 1), thus BM cuts ABC into two triangles
with the same area. One of them (ABM) has the same area as ACD, that is the area
of ABC is the double of the area of ACD. These triangles have the same altitudes
on AB and on CD respectively (the height of the trapezoid), therefore AB = 2CD.

A B

CDE

M

Fig. 1

Let E be on the line CD such, that D is the midpoint of CE. Since AB = 2CD
we have CE = AB, that is ABCE is a parallelogram. We know M is the midpoint of
BE therefore it is the midpoint of BE as well. Thus DM is a mid-segment of BCE,
therefore DM is parallel to BC.

3. Find all positive integers n such that (2n + 1)(3n + 2) is divisible by 5n.
(Ján Mazák)

Solution. The following table shows 2n +1 and 3n +2 modulo 5 (we know, that both
sequences modulo 5 have to be periodic):

n 1 2 3 4 5 6 7 8 . . .

2n + 1 3 5 9 17 33 65 129 257 . . .
modulo 5 3 0 4 2 3 0 4 2 . . .

3n + 2 5 11 29 83 245 731 2 189 6 563 . . .
modulo 5 0 1 4 3 0 1 4 3 . . .

Both sequences modulo 5 are periodic with period 4. But 2n + 1 is divisible by 5
iff n is 2 modulo 4, and 3n + 2 is divisible by 5 iff n is 1 modulo 4. Thus if 5n should
divide (2n + 1)(3n + 2), it has to divide one of the factors. But for n > 2 obviously
5n > 3n + 2 and 5n > 2n + 1 and 5n cannot divide any of the factors. For n = 1 we
have 51 | (21 + 1)(31 + 2) = 15, thus n = 1 is the unique solution of the problem.
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Second Round of the 61st Czech and Slovak
Mathematical Olympiad
(January 17th, 2012)

MO
1. Let Sn denotes the sum of all n-digit numbers, which contain only digits 1, 2,

3, at least once each. Find all integers n > 3 such that Sn is divisible by 7.
(Pavel Novotný)

Solution. Similarly as in Problem 1 of the take-home part, we compute the sum by
summing up all the contributions by all digits. The number of occurrences of any of
the digits on an arbitrary but given place in the number is k = 3n−1−2 ·2n−1 +1 (we
fix one position, if all the others were arbitrary, we would get 3n occurrences, but we
have to subtract numbers consisting only of two or one digit). Then the contribution
p of the digit 1 to the sum is

p = k + 10k + 100k + · · ·+ 10n−1k = (1 + 10 + 100 + · · ·+ 10n−1)k =
10n − 1

9
k.

The contributions of the digit 2 and 3 are obviously 2p and 3p, thus

Sn = p+ 2p+ 3p = 6p = 6 · 10n − 1
9

k =
2
3
(10n − 1)(3n−1 − 2n + 1).

Sn is divisible by 7 iff at least one of the factors 10n − 1, 3n−1 − 2n + 1 is. The
following table lists the factors modulo 7 for a few small integers:

n 1 2 3 4 5 6 7 8
10n − 1 9 99 999 9 999 99 999 999 999 . . .

modulo 7 2 1 5 3 4 0 2 1
3n−1 − 2n + 1 0 0 2 12 50 180 602 1 932

modulo 7 0 0 2 5 1 5 0 0

Both sequences modulo 7 are periodic with the period 6 (10n modulo 7 is periodic
with the period 6, so is 10n − 1; 3n modulo 7 is periodic with the period 6 and 2n

modulo 7 has period 3, thus 3n−1 − 2n + 1 has period 6) and 10n − 1 is divisible by 7
for n = 6k, 3n−1 − 2n + 1 is a multiple of 7 for n = 6k + 1 or n = 6k + 2.

Conclusion. All solutions of the problem are integers of the form 6m, 6m + 1,
and 6m+ 2 for any positive integer m.
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2. Find an arithmetic progression with the first element an integer a > 1 such that
exactly two numbers from a2, a3, a4, a5 are elements of the progression as well
and it’s difference is as large as possible (the difference does not have to be an
integer). (Jaromír Šimša)

Solution. An arithmetic progression A with the first element a and a positive dif-
ference d contains those numbers from a2, a3, a4, a5 for which the corresponding
difference from

a2 − a = a(a− 1),
a3 − a = a(a− 1)(a+ 1),
a4 − a = a(a− 1)(a2 + a+ 1),
a5 − a = a(a− 1)(a+ 1)(a2 + 1)

(1)

is an integer multiple of d.
Let us suppose A contains just two numbers out of a2, a3, a4, a5. If a2 ∈ A,

then a(a− 1) is an integer multiple of d. Since a is an integer, then all the differences
in (1) (all of them are integer multiples of a(a− 1)) are integer multiples of d. Thus
A contains all numbers a2, a3, a4, a5, therefore the sought A does not contain a2,
and it contains exactly two from a3, a4, a5.

If a3 /∈ A, or a4, a5 ∈ A, then

a4 − a
d

,
a5 − a
d

are integers.
Then also

a5 − a
d
− a · a

4 − a
d

=
a2 − a
d

,

is integer. Consequently a2 ∈ A, contradiction. Thus a3 ∈ A. Then we have d 6 a3−a
for the difference d, where the equation holds (d is the largest one) if a3 is the second
element of the progression. Then a2 /∈ A, and a+ (a2 + 1)(a3 − a) = a5 ∈ A. Also

a4 − a
d

=
a4 − a
a3 − a

=
a2 + a+ 1
a+ 1

= a+
1

a+ 1

is not an integer for any positive integer a, which shows a4 /∈ A.

Conclusion. The sought arithmetic progression is the progression with the first
element a and the difference d = a3 − a.

3. Let ABCDEF be an inscribed hexagon, in which AB ⊥ BD, BC = EF . More-
over, suppose that the lines BC and EF cut AD in P , Q, respectively. Denote
S the midpoint of AD and K, L the incenters of BPS, EQS. Prove that the
angle KLD is right. (Tomáš Jurík)

Solution. Let k be the circumcircle of the hexagon. Since AP ⊥ BD, k is a Thales
circle with diameter AD, thus S, the midpoint of AD, is the center of k as well. We
show 6 KDL = 90◦. There is 6 KDL = 6 KDS + 6 LDS. Moreover the triangles

9



KDS and KBS are congruent according to the sas theorem: both of them have SK
as a side, SD and SB are both diameters of k, and 6 BSK = 6 KSD because SK is
the angle bisector of BSP (Fig. 1). Thus 6 KDS = 6 KBS. Since BK is the angle

A

B

C

D

E

F

S P
Q

K

L

k

Fig. 1

bisector of SBP we have 6 KDS = 1
2
6 CBS. Similarly 6 LDS = 1

2
6 QES.

Now we use the assumption BC = EF . Then BCS and EFS are congruent
isosceles triangles (with the legs equal to the radius of k), thus 6 CBS = 6 FES. In
total

6 KDL = 6 KDS + 6 LDS =
1
2
6 CBS +

1
2
6 QES =

=
1
2
6 FES +

1
2
6 QES =

1
2
(6 FES + 6 QES) =

1
2
· 180◦ = 90◦.

4. Among real numbers a, b, c, and d which satisfy

ab+ cd = ac+ bd = 4 a ad+ bc = 5

find these, for which the value of a+ b+ c+ d is the least possible. Find this (the
least) value as well. (Jaromír Šimša)

Solution. We have
(a+ b+ c+ d)2 = a2 + b2 + c2 + d2 + 2(ab+ cd+ ac+ bd+ ad+ bc) =

= a2 + b2 + c2 + d2 + 2(4 + 4 + 5) = a2 + d2 + b2 + c2 + 26.
(1)

Now a2 + d2 > 2ad, b2 + c2 > 2bc where the equality holds iff a = d and b = c
and from (1) we get

(a+ b+ c+ d)2 > 2ad+ 2bc+ 26 = 2 · 5 + 26 = 36.

Thus among reals which satisfy the conditions we always have a+b+c+d > 6, where
the equality holds iff a = d and b = c, or

2ab = 4, a2 + b2 = 5,

thus {a, b} = {1, 2}.
Conclusion. The sought a, b, c, d are the quadruples (1, 2, 2, 1) and (2, 1, 1, 2)

with the least value of a+ b+ c+ d = 6.
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Final Round of the 61st Czech and Slovak
Mathematical Olympiad
(March 26–27, 2012)

MO
1. Find all integers n such that n4 − 3n2 + 9 is prime. (Aleš Kobza)

Solution. We factorize the given expression:

n4 − 3n2 + 9 = n4 + 6n2 + 9− 9n2 = (n2 + 3)2 − (3n)2 = (n2 + 3n+ 3)(n2 − 3n+ 3).

Should the product be a prime p, one of the factors should be 1 or −1 and the
other one then p or −p. But both of the factors are only positive (they have negative
discriminants), thus the only possibilities are

n2 + 3n+ 3 = 1 or n2 − 3n+ 3 = 1.

The roots of the first equation are n = −1 and n = −2, the second equation has roots
n = 1 and n = 2. In both cases the values of the other factor are 7 or 13 which are
primes.

Conclusion. The number n4 − 3n2 + 9 is prime iff n ∈ {−2,−1, 1, 2}.

2. Find the greatest possible area of a triangle ABC with medians satisfying ta 6 2,
tb 6 3, tc 6 4. (Pavel Novotný)

Solution. Let T be the centroid of ABC and K, L, M be the midpoints of BC,
CA, AB. Medians cut ABC into six smaller triangles, each with the same area: for
example in the triangle AMT we have AM = 1

2c, its altitude through T is 1
3vc long,

that is SAMT = 1
2 ·

1
2c ·

1
3vc = 1

6 ·
1
2c ·vc = 1

6SABC . Analogously for the other triangles.

A B

C

KL

M

T

2
3 ta

1
3 tb

Fig. 1
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Thus we will seek for the greatest possible area of one of the triangles, say ATL
(Fig. 1), and then we multiply the result by six. There is

AT =
2
3
ta 6

4
3
, TL =

1
3
tb 6 1.

Therefore we can constrain the area:

SATL =
1
2
AT · TL · sin 6 ATL 6

1
2
· 4
3

=
2
3
.

Thus the area of the ABC can be at most 6 · 2
3 = 4, where the equality holds iff

ta = 2, tb = 3 and 6 ATL = 90◦.
There is a triangle satisfying the conditions with the area 6 indeed: first we

construct right triangle ATL with the legs AT = 4
3 and TL = 1. Then C is the

symmetric image of A with respect to L and B is the image of L under the homothety
with center T and coefficient −2 (Fig. 2). It is easy to count the length of AB. For

A

B

C

T
L

M

K

1
4
3

Fig. 2

example the theorem of Pythagoras in ABT gives

AB =
√
AT 2 + TB2 =

√
16
9

+ 4 =

√
52
9

=
2
3

√
13.

Since M is on the Thales’ circle with the diameter AB, there is MT = 1
2AB = 1

3

√
13.

Then tc = 3 ·MT =
√

13 < 4.

Conclusion. The greatest possible area of the triangle ABC is 4.

3. Prove that among any 101 real numbers one can choose u and v such that

100 |u− v| · |1− uv| 6 (1 + u2)(1 + v2).

(Pavel Calábek)

Solution. Since 1 + x2 > 0 for any real x we get equivalent inequalities:

100 |(u− v)(1− uv)| 6 (1 + u2)(1 + v2),
100

∣∣u− v − u2v + uv2
∣∣ 6 (1 + u2)(1 + v2),∣∣u(1 + v2)− v(1 + u2)
∣∣ 6 1

100
(1 + u2)(1 + v2),∣∣∣∣ u

1 + u2
− v

1 + v2

∣∣∣∣ 6 1
100

. (1)
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Values of
f(x) =

x

1 + x2
, x ∈ R,

are in 〈− 1
2 ,

1
2 〉, since for any real x we have

|x| =
√

1 · x2 6
1 + x2

2
hence

|x|
1 + x2

6
1
2
.

Now divide 〈− 1
2 ,

1
2 〉 into one hundred intervals of the length 1

100 . According to
the Pigeon hole principle, among any 101 real numbers there are u and v such that
f(u) and f(v) lie in the same interval, that is |f(u)− f(v)| 6 1

100 , which is exactly
the inequality (1), which is equivalent to the original inequality.

4. There is a point X inside a parallelogram ABCD. Construct a line, which goes
through X and divides the parallelogram into two parts, with the greatest possible
difference in their areas. (Vojtech Bálint)

Solution. The sum of the areas of the two parts, into which the line cuts the paral-
lelogram ABCD is constant, their difference will be the greatest iff the smaller area
will be the smallest possible. First notice that if X is the center of ABCD, than any
line through X divides ABCD into two parts of the same area — they are symmetric
reflections of each other with respect to X. Thus any line through X is a solution of
the given problem.

Generally, let K, L, M , and N be the midpoints of AB, BC, CD, and DA and
let S be the center of ABCD. First, let as assume X is inside of the parallelogram
AKSN (then the symmetric reflection A′ of A with respect to X lies inside ABCD).

Consider two lines parallel to sides of ABCD going through A′. Denote P and Q
their intersections withAB andAD. ThenAPA′Q is parallelogram with the centerX.
Thus any line passing through X divides APA′Q into two shapes of the same area.
Each of these shapes lies in different parts, into which the line cuts ABCD (Fig. 3a).
That is both of the parts of ABCD have the area at least the half of the area of
APA′Q. Thus the smaller part of ABCD will have the smallest possible area iff it
will be inside of APA′Q. This will be the case for the line PQ (Fig. 3b).

A B

CD

X

A′

P

Q

Fig. 3a

A B

CD

X

A′

P

Q

Fig. 3b

Analogously we find the line, if X is inside of KBLS, SLCM , or NSMD.
Finally if X inside of any of KS, similarly we consider the parallelogram ABA′B′

with A′ and B′ being the symmetric reflections of A and B with respect to X. Now the
sought lines again have to cut ABCD into two parts one of which is inside ABA′B′.
Obviously, such is any line UX, where U is arbitrary point of AB′ (Fig. 4a,b).
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A B

CD

XU

A′B′

Fig. 4a

A B

CD

X
A′B′

Fig. 4b

Analogously we find the lines if X is inside of SM , NS, or SL.

Conclusion. If X is the center of quadrilateral ABCD then any line passing
through X is the solution, if X is off KM and NL then unique line solves the problem.
If X is inside KS, SM , NS, or SL then infinitely many lines are the solution. In
each of the cases the construction is straight forward considering the facts, which have
been mentioned.

5. In a group of 90 children, each one has at least 30 friends (friendship is mutual).
Prove that children can be divided into 3 groups containing 30 children each, such
that any child has a friend in his (her) group. (Ján Mazák)

Solution. There are

V =
(

90
30

)
·
(

60
30

)
· 1
3!
,

divisions into three groups of 30 children.
We call a division bad because of A, if the child A has no friend in his (her) group

in the division. We show, that the number Z of bad divisions (i.e. the divisions which
do not meet the conditions of the problem) is less than V .

Let ZA denotes the number of divisions which are bad because of A. If A has n
friends in the group altogether, then there exists(

89− n
29

)
groups of 30 children, containing A and 29 other children, non of whom is a friend
with A.

For each such a group, the children left can be divided in(
60
30

)
· 1
2

ways into two groups of 30 children. Thus we get the following estimate for the
number of divisions, which are bad because of A (taking into account that n > 30,
that is 89− n > 59):

ZA =
(

89− n
29

)
·
(

60
30

)
· 1
2

6

(
59
29

)
·
(

60
30

)
· 1
2

(1)

14



The number of all bad divisions is certainly not greater than a sum of all bad
divisions for every child individually (a division can be bad because of more children).
Since there is 90 children, according to (1) we get

Z 6 90 ·
(

59
29

)
·
(

60
30

)
· 1
2
.

Thus to prove Z < V it is sufficient to prove

90 ·
(

59
29

)
·
(

60
30

)
· 1
2
<

(
90
30

)
·
(

60
30

)
· 1
3!
, (2)

Equivalent modifications of the inequality yields:

45 ·
(

59
29

)
<

(
90
30

)
· 1
6
,

6 · 45 · 59!
29! · 30!

<
90!

30! · 60!
,

6 · 45 · 59 · 58 · . . . · 30 < 90 · 89 · . . . · 61,

6 · 45 <
90
59
· 89
58
· . . . · 61

30
. (3)

Any of the 30 fraction on the RHS is apparently greater than 1, 5, therefore RHS >
1,530 = 2,2515 > 215 > 270 = 6 · 45 and we are done.

6. In the domain of real numbers solve the following system of equations

x4 + y2 + 4 = 5yz,
y4 + z2 + 4 = 5zx,
z4 + x2 + 4 = 5xy.

(Jaroslav Švrček)

Solution. First we give an estimate of the LHS of the first equation. Consider the
obvious inequality 4x2 6 x4 + 4 (it is equivalent to 0 6 (x2 − 2)2), which holds for
any real number x with the equality iff x = ±

√
2. Then

4x2 + y2 6 x4 + y2 + 4 = 5yz.

Analogously we get next two inequalities. Thus we have

4x2 + y2 6 5yz, 4y2 + z2 6 5zx, 4z2 + x2 6 5xy,

Summing up these inequalities we get

x2 + y2 + z2 6 xy + yz + zy,

which is equivalent to

(x− y)2 + (y − z)2 + (z − x)2 6 0.

Thus
x = y = z =

√
2 or x = y = z = −

√
2.

which are indeed solutions.

Conclusion. The solutions of the given system are the triples
(√

2,
√

2,
√

2
)

and(
−
√

2,−
√

2,−
√

2
)
.
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