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1. A number n is a product of three (not necessarily distinct) prime numbers.

Adding 1 to each of them, after multiplication we get a larger product n + 963.
Determine the original product n. (Pavel Novotný)

Solution. We look for n = p · q · r, with primes p 6 q 6 r satisfying

(p+ 1)(q + 1)(r + 1) = pqr + 963. (1)

If p = 2, the right-hand side of (1) is odd, hence the factors q + 1, r + 1 on the left
must be odd too. This implies that p = q = r = 2, which contradicts to (1). Thus we
have proved that p > 3.

Now we will show that p = 3. Suppose on the contrary that 3 < p 6 q 6 r.
Then the right-hand side of (1) is not divisible by 3. The same must be true for the
product (p+ 1)(q + 1)(r+ 1). Consequently, all the primes p, q, r are congruent to 1
modulo 3, and hence (p+ 1)(q + 1)(r+ 1)− pqr is congruent to 2 · 2 · 2− 1 · 1 · 1 = 7,
which contradicts to (p+ 1)(q + 1)(r + 1)− pqr = 963. Therefore, the equality p = 3
is established.

Putting p = 3 into (1) we get 4(q+ 1)(r+ 1) = 3qr+ 963, which can be rewritten
as (q + 4)(r + 4) = 975. In view of the prime factorization 975 = 3 · 52 · 13 and
inequalities 7 6 q + 4 6 r + 4, we conclude that q + 4 6

√
975 < 32 and hence

q + 4 ∈ {13, 15, 25}. Since q is a prime, it holds that q = 11. Then r + 4 = 65, and
hence r = 61 (which is a prime indeed). Consequently, the problem has a unique
solution

n = 3 · 11 · 61 = 2 013.

2. Let x, y and z be any positive real numbers. Prove the inequality
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Find when the equality holds. (Jaroslav Švrček, Jaromír Šimša)

Solution. Since the inequality involves the minimum of two positive numbers and
since the function y = x2 is increasing on the set R+, our task is to verify
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as well as to find when at least one equality in (1) holds. Replacing a triple (x, y, z)
by the triple (y, x, z), we get the second inequality in (1) from the first one. Thus we
can restrict to the proof of the first inequality. Distributing both sides leads to
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Let us introduce the new (positive) variables a = x/y, b = y/z, c = z/x and rewrite
the last inequality as

(
a2 − 1− a+

1

a

)
+
(
b2 − 1− b+

1

b

)
+
(
c2 − 1− c+

1

c

)
> 0. (2)

For any positive t, we notice that

t2 − 1− t+
1

t
= (t2 − 1)− t2 − 1

t
=

(t2 − 1)(t− 1)

t
=

(t− 1)2(t+ 1)

t
.

This implies that (2) holds as well and that (2) becomes an equality if and only
if a = b = c = 1, i.e. x = y = z for the original variables. Note that the last
condition does not change under transformation (x, y, z)→ (y, x, z). Thus the original
inequality is proven and becomes an equality if and only x = y = z.

3. We are given a triangle ABC with incentre I. Suppose that there exists an
intersection point M of the line AB and the perpendicular to CI through I.
Prove that the circumcirle of the triangle ABC intersects the segment CM in an
interior point N and that NI ⊥MC. (Peter Novotný)

Solution. First we show in two different ways that the line MI, a perpendicular
to CI through I, is tangent the to circle ABI. The first way is based on the known
fact that AIC a BIC are obtuse angles of measures 90◦+ 1

2β and 90◦+ 1
2α, respectively

(in common notation for interior angles of 4ABC). This fact implies that the line
MI forms acute angles 1

2β and 1
2α with the segments AI and BI, respectively1 hence

the angles congruent with angles IBA and IAB in circle ABI (Fig. 1). Well known
properties of inscribed and subtended angles lead to the conclusion that the line MI
is tangent to the circle ABI. The second reason for this conclusion is the based on
the known fact that the centre of ABI is the midpoint of the arc AB of circle ABC
which lies on the ray CI bisecting 6 ACB).

1 As an consequence we can see that the assumed existence of the intersection point M is equivalent
to the inequality 1

2
α 6= 1

2
β or α 6= β. Due to the symmetry we can assume that α > β as in our

figure; the point M then lies on the ray opposite to ray AB and satisfies |6 IMA| = 1
2
α− 1

2
β.
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Fig. 1

From the proved tangency of MI to ABI it follows that the point M lies on the
line AB outside of the segment AB. Moreover, the power m of M with respect to
ABI is positive and given by m = |MI|2 = |MA| · |MB|. Hence M lies in the exterior
of the circle ABC (as AB is its chord) and the power of M with respect to ABC is
the same m = |MA| · |MB|. Since m = |MI|2 < |MC|2 from the right-angled triangle
CMI, it holds that |MA| · |MB| < |MC|2. This means that the circle ABC intersects
the segment MC in an interior point N , because |MN | · |MC| = |MA| · |MB| implies
that |MN | < |MC| for the second point N of intersection of the ray MC with ABC.
This proves the first conclusion of the problem.

To show that CNI is a right angle, we use the proved equality |MC| · |MN | =
|MI|2 and apply a familiar theorem to the leg MI of the right-angled triangle CMI:
Its altitude from the vertex I meets the hypotenuse CM in such a point X which is
determined by equation |MC| · |MX| = |MI|2. Thus we have X = N in our case and
the solution is complete.

4. Let l(n) denote the the greatest odd divisor of any natural number n. Find the
sum

l(1) + l(2) + l(3) + · · ·+ l
(
22013

)
.

(Michal Rolínek)

Solution. For each natural k, the equalities l(2k) = l(k) and l(2k − 1) = 2k − 1
are clearly valid. Thus we can add the values l(n) over groups of numbers n lying
always between two consecutive powers of 2. In this way we will prove by induction
the formula

s(n) = l
(
2n−1 + 1

)
+ l
(
2n−1 + 2

)
+ l
(
2n−1 + 3

)
+ · · ·+ l

(
2n
)
, (1)

for n = 1, 2, 3, . . . The case n = 1 is trivial. If s(n) = 4n−1 pro some n, then
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+ · · ·+ l
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)
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)
+ · · ·+
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)]
+ s(n)

=
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2

(
2n + 1 + 2n+1 − 1

)
+ 4n−1 = 2n−2 · 3 · 2n + 4n−1 = 4n.
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(We have used the fact the number of all odd numbers from 2n + 1 to 2n+1 − 1
[including both limits] equals 2n−1.) The proof of (1) by induction is complete.

Using the formula (1) we compute the requested sum as follows:

l(1)+l(2) + l(3) + · · ·+ l
(
22013

)
= l(1) + s(2) + s(3) + · · ·+ s(2 013)

= 1 + 1 + 4 + 42 + 43 + · · ·+ 42012 = 1 +
42013 − 1

3
=

42013 + 2

3
.

Remark. It is worth mentioning that the formula s(n) = 4n−1 is a special case
of a more general (and surprising) formula

l(k + 1) + l(k + 2) + l(k + 3) + · · ·+ l(2k) = k2, (2)

which can be proved itself for each natural number k even without using induction.
Indeed, all the k summands on the left-hand side of (2) are obviously numbers of
the k-element subset {1, 3, 5, . . . , 2k−1}, and moreover, these summands are pairwise
distinct, because the ratio of any two numbers from {k + 1, k + 2, . . . , 2k} is not a
power of 2. Consequently, the sum in (2) equals the sum 1 + 3 + 5 + · · · + (2k − 1),
which is k2 as stated in (2).

5. Determine the number of all coverings of a chessboard 3×10 by (nonoverlapping)
pieces 2× 1 which can be placed both horizontally and vertically.

(Stanislava Sojáková)

Solution. Let us solve a more general problem of determining the number an of all
coverings of a chessboard 3×2n by pieces 2×1, for a given natural n.2 We will attack
the problem by a recursive method, starting with n = 1.

The value a1 = 3 (for the chessboard 3 × 3) is evident (see Fig. 2). To prove
that a2 = 11 by a direct drawing all possibilities is too laborious. Instead of this,
we introduce new numbers bn: Let each bn denote the number of all “incomplete”
coverings of a chessboard 3 × (2n − 1) by 3n − 2 pieces 2 × 1, when a fixed corner
field 1× 1 (specified in advance, say the lower right one) remains uncovered. Thanks
to the axial symmetry, the numbers bn remain to be the same if the fixed uncovered
corner field will be the upper right one. Moreover, it is clear that b1 = 1.

Fig. 2

Now we are going to prove that for each n > 1, the following equalities hold:

bn = an−1 + bn−1 and an = an−1 + 2bn. (1)

2 For an obvious reason, we consider a chessboard 3× k with an even k only.

4



The first equality in (1) follows from a partition of all (above described) “incomplete”
coverings of a chessboard 3 × (2n − 1) into two (disjoint) classes which are formed
by coverings of types A and B, respectively, see Fig. 3. Notice that the numbers of
elements (i.e. coverings) in the two classes are an−1 and bn−1, respectively.

A B

Fig. 3

Similarly, the second equality in (1) follows from a partition of all coverings of a
chessboard 3× 2n into three (disjoint) classes which are formed by coverings of types
C, D and E respectively, see Fig. 4. It is evident that the numbers of elements in the
three classes are an−1, bn and bn, respectively.

C D E

Fig. 4

Now we are ready to compute the requested number a5. Since a1 = 3 and b1 = 1,
the proved equalities (1) successively yield

b2 = a1 + b1 = 4, a2 = a1 + 2b2 = 11, b3 = a2 + b2 = 15, a3 = a2 + 2b3 = 41,

b4 = a3 + b3 = 56, a4 = a3 + 2b4 = 153, b5 = a4 + b4 = 209, a5 = a4 + 2b5 = 571.

Answer. The number of coverings of the chessboard 3× 10 equals 571.

Remark. Let us show that the numbers an of coverings of a chessboard 3 × 2n
by pieces 2× 1 satisfy the following recurrence equation

an+2 = 4an+1 − an for each n > 1. (2)

(Thus the numbers an can be computed without using auxiliary numbers bn from the
above solution.) We prove (2) by excluding the numbers from the relations (1):

an+2 = an+1 + 2bn+2 = an+1 + 2(an+1 + bn+1)

= 3an+1 + 2bn+1 = 3an+1 + (an+1 − an) = 4an+1 − an.
Finally, let us remind a well known result: each sequence (an)∞n=1 of numbers

satisfying (2) is of the form an = C1λ
n
1 + C2λ

n
2 , where λ1,2 = 2 ±

√
3 are the roots

of the equation λ2 = 4λ − 1 while C1,2 are arbitrary constants. Taking in account
our values a1 = 3 and a2 = 11, we conclude that for each n, the number an of all
coverings of a chessboard 3× 2n by pieces 2× 1 is given by a direct formula

an =
3 +
√

3

6
·
(
2 +
√

3
)n

+
3−
√

3

6
·
(
2−
√

3
)n
.
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6. We are given a triangle ABC. Find the locus of points X in the plane ABC
whose reflections through the lines AB, BC, CA are vertices of an equilateral
triangle. (Pavel Calábek)

Solution. For any point X of the plane ABC, let Xa, Xb and Xc denote the reflec-
tions of X through the lines BC, CA and AB, respectively (Fig. 5). First we prove
that the distances between any two of the points Xa, Xb and Xc are given in general
by formulæ

|XaXb| = 2|XC| sin γ, |XaXc| = 2|XB| sinβ, |XbXc| = 2|XA| sinα, (1)

in which α, β, γ denote the interior angles of the triangle ABC as usual.

A B

C X

Pa

Pb

Pc
Xa

Xb

Xc

γ
γ

Fig. 5

It suffices to prove the first equality (1) which is obvious if X = C, because then
Xa = Xb (= X). If X 6= C, then the segment XC is a diameter of a circle (see Fig. 5)
which passes through the marked orthogonal projections Pa and Pb of X onto BC
and CA, respectively (Thales’ theorem). Since the chord PaPb subtends inscribed
angles γ and 180◦ − γ, Law of Sines implies that |PaPb| = |XC| sin γ. Using the
homothety with centre X and ratio 2, we conclude that |XaXb| = 2|PaPb|, and hence
the equalities (1) are established for any point X.

The proved formulæ (1) imply that our task is to find exactly such points X in
the plane ABC that satisfy

2|XA| sinα = 2|XB| sinβ = 2|XC| sin γ > 0

(recall that the triangle XaXbXc has to be equilateral). Otherwise speaking, we look
for all points X whose distances to A, B and C are positive and proportional as
follows:

|XA| : |XB| : |XC| = 1

sinα
:

1

sinβ
:

1

sin γ
=

1

|BC|
:

1

|AC|
:

1

|AB|
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(we have turned from angles to sides of 4ABC using Law of Sines again). Such
points X are determined as common points of the following three circles of Apollonius
(i.e. sets of points in the plane which have a specified ratio of distances to two fixed
points):

ka :
|XB|
|XC|

=
|AB|
|AC|

, kb :
|XA|
|XC|

=
|AB|
|BC|

, kc :
|XA|
|XB|

=
|AC|
|BC|

. (2)

It is clear that any point shared by two of the circles lies on the third circle as well.3 It
follows from (2) that A ∈ ka, B ∈ kb a C ∈ kc, which simplifies the construction of the
three circles in practice: If the bisectors of interior angles in 4ABC cut its interior in
segments AK, BL and CM (Fig. 6), then K ∈ ka, L ∈ kb and M ∈ kc (an immediate
consequence of the well known proportions such as |KB| : |KC| = |AB| : |AC|).
Hence the centre of ka can be constructed as the intersection point of the line BC
and the perpendicular bisector of the segment AK (excluding the case |AB| = |AC|,
when ka becomes simply the perpendicular bisector of BC). Similarly, using the
perpendicular bisectors of BL and CM we get centres od kb and kc, respectively.)

Figure 6 illustrates the case when the circles ka, kb, kc meet in two distinct
points and hence the given problem has two solutions marked as X and Y , with the
corresponding equilateral triangles XaXbXc and YaYbYc, respectively.4

A

B

C

X

Y

K

L

M ka

kb

kc

Xa

Xb

Xc

Ya

Yb

Yc

Fig. 6

Despite of the fact that the requested locus of points X is determined (by an
Euclidean construction), we have to discuss how the number of solutions depends on

3 Some of these three sets (one or three) can be straight lines instead of circles — if the corresponding
ratio equals 1. We postpone this question to the closing discussion.

4 Afterwards we prove that two solutions exist whenever the given triangle ABC is not equilateral.
The fact that the last is not a trivial conclusion is supported by an observation that both solutions
X and Y in Fig. 6 are situated in the exterior of the triangle ABC.
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the choice of 4ABC. As we know, this reduces to the question of common points of
any two of the circles ka, kb, kc. This matter becomes easier if we involve again into
consideration the segments AK, BL, CM from Fig. 6 which are chords of ka, kb and
kc, respectively.

Discussion.
a) If the triangle ABC is equilateral, the “circles” ka, kb, kb are in fact perpendic-

ular bisectors of the sides of 4ABC. Consequently, the problem has a unique
solution — a point X which coincides with the incentre of 4ABC.

b) If the triangle ABC is isosceles (but not equilateral), say if |AB| 6= |AC| = |BC|,
then the circle kc is a perpendicular bisector of the base AB which meets the
circle ka in two points, because kc meets the interior of the chord AK, and hence
the both arcs AK of the circle ka as well. Consequently, the problem has two
solutions.

c) Suppose that the triangle ABC is scalene, with the largest side, say AB (as in
Fig. 6). Then the ratio |XB|/|XC| for points X ∈ ka is larger than 1, because
of A ∈ ka. Hence B lies in the interior ka, while C lies in its exterior. The last
together with A ∈ ka implies that L, an interior point of AC, lies in the exterior
of ka. Thus ka intersects the chord BL of kb which means that ka and kb meet
in two points. Consequently, the problem has two solutions.

8



First Round of the 63rd Czech and Slovak
Mathematical Olympiad
(December 10th, 2013)

MO
1. Prove that for each integer number n, n > 3, the following 2n-digit number

1 . . . 1︸ ︷︷ ︸
n−1

2 8 . . . 8︸ ︷︷ ︸
n−2

96

is a perfect square. (Vojtech Bálint)

Solution. The number under consideration can be expressed as follows:(
102n−1 + 102n−2 + · · ·+ 10n+1

)
+ 2 · 10n + 8 ·

(
10n−1 + 10n−2 + · · ·+ 102

)
+ 96

= 10n+1 · 10n−1 − 1

9
+ 2 · 10n + 8 · 102 · 10n−2 − 1

9
+ 96

=
102n − 10n+1 + 18 · 10n + 800 · 10n−2 − 800 + 9 · 96

9

=
102n + 16 · 10n + 64

9
=
(10n + 8

3

)2
.

As required, we have obtained a perfect square, because the number 10n+8 is divisible
by 3, as the sum of its digits equals 9.

Another solution. Starting with examples

1 296 = 362, 112 896 = 3362, 11 128 896 = 3 3362, . . . ,

we easily guess that for each n > 2,

1 . . . 1︸ ︷︷ ︸
n−1

2 8 . . . 8︸ ︷︷ ︸
n−2

96 = 33 . . . 3︸ ︷︷ ︸
n−1

62.

The exact proof can be done by using the usual multiplication scheme:

3 3 3 . . . 3 3 3 6
×3 3 3 . . . 3 3 3 6
2 0 0 0 . . . 0 0 1 6

1 0 0 0 0 . . . 0 0 8
1 0 0 0 0 0 . . . 0 8

1 0 0 0 0 0 0 . . . 8

..
.

..
.

1 . . . 0 0 0 0 0 8
1 0 . . . 0 0 0 0 8

1 0 0 . . . 0 0 0 8
1 1 1 . . . 1 1 2 8 8 8 . . . 8 8 9 6
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Both (identical) factors are n-digit, hence an (n + 1)-digit number stands in each of
the n rows between the two delimiting lines. From this fact, it is easy to determine
the values of digits (including the numbers of appearances) in the resulting product.

2. Let M be the midpoint of the side AB of a triangle ABC. Prove that the equality
|6 ABC| + |6 ACM | = 90◦ holds if and only if the triangle ABC is isosceles or
right-angled, with AB as a base or a hypotenuse, respectively. (Pavel Novotný)

Solution. Assume first that | 6 ABC| + | 6 ACM | = 90◦. Using the notation φ =
| 6 ACM | and ψ = |6 BCM | (Fig. 1), we conclude from our assumption that | 6 ABC| =
90◦ − φ, and hence |6 BAC| = 90◦ −ψ as well, because of an easy angle computation
in 4ABC:

| 6 BAC| = 180◦ − | 6 ABC| − | 6 ACB|
= 180◦ − (90◦ − φ)− (φ+ ψ) = 90◦ − ψ.

A B

C

M

φ ψ

90◦−φ90◦−ψ

Fig. 1

Applying Law of Sines to 4ACM and 4BCM , we get

sin(90◦ − ψ)

sinφ
=
|CM |
|AM |

=
|CM |
|BM |

=
sin(90◦ − φ)

sinψ
.

Comparing the two ratios of sines and using the formula sin(90◦ − ω) = cosω, we
obtain an equality sinφ cosφ = sinψ cosψ or sin 2φ = sin 2ψ. Since the angles φ and
ψ are acute, both 2φ and 2ψ are between 0◦ and 180◦. Thus by a well known sine
property, the equality sin 2φ = sin 2ψ means that either 2φ = 2ψ or 2φ+ 2ψ = 180◦.
In the first case (when φ = ψ), the interior angle of 4ABC at the vertices A and B
are equal, in the second case (when φ+ψ = 90◦) the interior angle at the vertex C is
right. This completes the proof of one of the two implications stated in the problem.

To prove the second (converse) implication, let us assume that (i) |AC| = |BC|
or (ii) | 6 ACB| = 90◦.

Case (i). It follows from |AC| = |BC| that the triangles ACM and BCM are
congruent (by SSS theorem), with right interior angles at the vertex M . Consequently,

|6 ABC|+ | 6 ACM | = |6 MBC|+ |6 BCM | = 180◦ − | 6 BMC| = 90◦.

Case (ii). It follows from |6 ACB| = 90◦ that |MB| = |MC| by Thales’ theorem.
Thus the angles MCB and MBC (or ABC) are congruent and hence

|6 ABC|+ |6 ACM | = |6 MCB|+ |6 ACM | = | 6 ACB| = 90◦.

The converse implication is proven.
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Another solution. Let k be the circumcircle of the given triangle ABC. Its
median CM can be extended to the chord CC ′ of the circle k (Fig. 2). Since the
inscribed angles ABC ′ and ACC ′ (or ACM) are congruent, the considered sum of
angles ABC and ACM is equal to the angle CBC ′. By Thales’ theorem the last
angle CBC ′ is right if and only if the chord CC ′ is a diameter of the circle k. This
happens if and only if the centre S of k lies on the ray CM . For such a situation, we
distinguish two cases: S = M and S 6= M . Note that S = M holds if and only if the
angle ACB is right (by Thales’ theorem again). Thus let us analyse the second case
S 6= M : The three distinct point C, M and S are obviously collinear if and only if
the line MS, a perpendicular bisector of a segment AB, passes through the point C.
However, the last condition is equivalent to the desired equality |AC| = |BC|. This
completes the proof (common for the both composing implications).

A B

C

M

C ′

k

Fig. 2

A B

C

M

C ′

k

t

Fig. 3

Remark. Instead of the chord CC ′ of the circumcircle k, it is possible to consider
the tangent line t to the circle k at its point C (Fig. 3). Since the inscribed angle
ABC is always congruent to the marked angle between AC and t, the sum of the
angles ABC a ACM equals 90◦ if and only if the tangent t is perpendicular to the
ray CM . The last is equivalent to the condition from the above solution, namely that
the ray CM passes through the centre S of k.

3. We are given a sheet of paper in the form of a rectangle x × y, where x and y
are integer numbers larger than 1. Let us draw a lattice of x · y unite squares
on the sheet. Rolling up the rectangle and gluing it along its opposite sides we
shape a lateral surface of a circular cylinder. Join each two distinct vertices of
the marked unit squares on the surface by a segment. How many of all these
segments are passing through an interior point of the cylinder? In the case x > y
decide when this number of “internal” segments is larger — for the cylinder with
bases of perimeter x, or y? (Vojtech Bálint)

Solution. We will compute the requested number P of all internal segments for the
cylinder formed by gluing the rectangle x × y along the opposite sides of length y.

11



This cylinder has two bases of perimeter x and its lateral sides are of length y. We
will use an obvious formula P = P0 − P1 − P2, where P0 denotes the total number of
segments, while P1 and P2 denote the numbers of segments which lie on the lateral
surface or on one of the two bases, respectively.

Note that the vertices of the unit squares are situated on the surface of the
cylinder in such a way that exactly y+ 1 of them lie on the same of the x lateral sides
and, in the same time, exactly x vertices lie on the same boundary circle of the two
bases. These facts lead immediately to the following formulæ

P0 =

(
x(y + 1)

2

)
=
x(y + 1)(xy + x− 1)

2
,

P1 = x ·
(
y + 1

2

)
=
x(y + 1)y

2
,

P2 = 2 ·
(
x

2

)
= x(x− 1).

Consequently,

P = P0 − P1 − P2 =
x(y + 1)(xy + x− 1)

2
− x(y + 1)y

2
− x(x− 1)

=
x(x− 1)(y2 + 2y − 1)

2
.

In view of symmetry, the number Q of internal segments for the other cylinder (with
base’s perimeter y and lateral sides of length x) is given by

Q =
y(y − 1)(x2 + 2x− 1)

2
.

To decide which of the inequalities P > Q or Q > P holds in the case when
x > y, we factorize the difference P −Q (since P = Q if x = y, the polynomial P −Q
must be divisible by x− y):

2(P −Q) = (x2 − x)(y2 + 2y − 1)− (y2 − y)(x2 + 2x− 1)

= (x2y2 − xy2 + 2x2y − 2xy − x2 + x)

− (x2y2 − x2y + 2xy2 − 2xy − y2 + y)

= 3xy(x− y)− (x− y)(x+ y) + (x− y)

= (x− y)(3xy − x− y + 1).

Thus x > y implies that P > Q if we show that the same condition x > y implies that
3xy − x− y + 1 > 0. The last is almost evident: it follows from y > 2 that 3xy > 6x
and hence

3xy − x− y + 1 > 5x− y + 1 > 4x+ 1 > 0.

Answer. In the case when x > y, the number of internal segments is larger for
the cylinder with bases which perimeter has length x.

12



Remark. Let us describe a shorter way of determining the number P . The
orthogonal projection of each internal segment to the fixed base of the cylinder is
one of the 1

2x(x− 1) segments connecting x vertices on the boundary circle. Each of
these projections is common for exactly (y+ 1)2 − 2 = y2 + 2y− 1 internal segments,
because y + 1 is the number of vertices on the same lateral side and all the segments
connecting two distinct lateral sides are internal, with exception of the two segments
lying on the bases of the cylinder. Hence,

P =
x(x− 1)(y2 + 2y − 1)

2
.
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Second Round of the 63rd Czech and Slovak
Mathematical Olympiad
(January 14th, 2014)

MO
1. Find all positive integers n which are not powers of 2 and which satisfy the

equation n = 3D + 5d, where D (and d) denote the greatest (and the least)
numbers among the all odd divisors of n which are larger than 1.

(Tomáš Jurík)

Solution. Let n = pα1
1 pα2

2 . . . pαk

k be the prime factorization of a satisfactory num-
ber n. Here p1 < p2 < · · · < pk are all the prime divisors of n and the exponents αi
are positive integers. The given equation implies that p1 = 2 (otherwise D = n which
contradicts to n = 3D + 5d) and that k > 2 (otherwise n is a power of 2). Thus we
have D = pα2

2 . . . pαk

k , d = p2 and the equation becomes

2α1pα2
2 . . . pαk

k = 3pα2
2 . . . pαk

k + 5p2 or
(
2α1 − 3

)
pα2−1
2 . . . pαk

k = 5.

(In the case when k = 2 the left-hand of the last equation is simply
(
2α1 − 3

)
pα2−1
2 .)

Since the number 5 has only two divisors 1 and 5, it holds that 2α1 − 3 ∈ {1, 5} and
hence either α1 = 2 or α1 = 3.

(i) The case α1 = 2. The simplified equation

pα2−1
2 . . . pαk

k = 5

holds if and only if either k = 2, p2 = 5 and α2 − 1 = 1, or k = 3, α2 − 1 = 0, p3 = 5
and α3 = 1 — then from 2 < p2 < p3 = 5 it follows that p2 = 3. Consequently, there
are exactly two solutions in the case (i), namely n = 2252 = 100 and n = 223151 = 60.

(ii) The case α1 = 3. The simplified equation

pα2−1
2 . . . pαk

k = 1

holds only for k = 2 and α2 − 1 = 0. Notice that there is no restriction on the prime
number p2 excepting the inequality p2 > 2. Consequently, there are infinitely many
solutions in the case (ii) and all of them are given by n = 23p12 = 8p2, where p2 is any
odd prime number.

Answer. All the solutions n are: n = 60, n = 100 and n = 8p, where p is any
odd prime number.

Remark. Let us show that the above solution can be presented more simply, if
the “full” prime factorization of n is replaced by a “partial” factorization n = 2αpl,
in which 2α is the greatest power of 2 dividing n, p is the smallest prime divisor of
n and and l is and odd number which has no prime divisor smaller than p (thus we

14



have either l = 1, or l > p). Using this factorization, we can write D = pl, d = p and
hence our task is to solve the equation

n = 2αpl = 3pl + 5p or
(
2α − 3

)
l = 5.

It follows that either l = 1 and 2α − 3 = 5, or l = 5 and 2α − 3 = 1. In the first case
we have α = 3 and thus n = 8p, where p is any prime number. In the second case it
holds that l = 5, α = 2 and thus n = 20p, but 5 = l > p implies that p ∈ {3, 5}, so
there are only two solutions n ∈ {60, 100}.

Another solution. The given equation n = 3D + 5d implies that n > 3D and
n 6 3D + 5D = 8D (because of d 6 D). Since the ratio n : D must be a power of 2,
it follows from 3 < n : D 6 8 that either (i) n = 4D, or (ii) n = 8D.

(i) The case n = 4D. From 4D = n = 3D + 5d we have D = 5d and thus
n = 4D = 20d. Since d must be a prime odd divisor of n which is a multiple of
5, we conclude that p ∈ {3, 5} and hence n ∈ {60, 100} (both the values are clearly
satisfactory).

(ii) n = 8D. Our way of deriving the inequality n 6 8D implies now that D = d
a hence D is an (odd) prime number. All such n = 8D are solutions indeed.

2. We are given two circles k1(S1, r1) and k2(S2, r2) in the plane, with |S1S2| >
r1 + r2. Find the locus of points X which do not lie on the line S1S2 and possess
the following property: The segments S1X and S2X intersect successively the
circles k1 and k2 in such points whose distances to the line S1S2 are the same.

(Jaromír Šimša)

Solution. In the first part of our solution, we will assume that X is any point with
the required property. It is clear that X lies in the exteriors of the circles k1 and k2
and that the points S1, S2 and X are vertices of a triangle whose sides S1X, S2X
are intersected successively by the circles k1 and k2 in such points Y1 a Y2 which lie
on the same line parallel to S1S2 (Fig. 1). Since the triangles XY1Y2 and XS1S2 are
similar (by theorem AA), it holds

|XY1|
|XS1|

=
|XY2|
|XS2|

, (1)

which can be rewritten, because of the equalities

|XY1| = |XS1| − r1 a |XY2| = |XS2| − r2, (2)

as an equation for lengths of the segments XS1 and XS2:

|XS1| − r1
|XS1|

=
|XS2| − r2
|XS2|

,

or
|XS1|
|XS2|

=
r1
r2
. (3)

Since the points S1 and S2 are fixed as well as the ratio r1/r2, the locus of points X
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X

S1 S2

Y1
Y2

H1 H2

k1

k2

Fig. 1

satisfying equation (3) is a circle of Apollonius (which evidently becomes a straight
line if the ratio r1/r2 equals 1). As known for the case when r1/r2 6= 1, the are exactly
two solutions X = H1 and X = H2 of the equation (3) that lie on the line S1S2 and
form a diameter H1H2 of the resulting circle of Apollonius. For our situation, let us
add the fact that the points H1 and H2 are centres of both homotheties of the initially
given circles k1 and k2.

In the second part of our solution, we will conversely assume that X is a point of
the circle of Apollonius given by the equation (3) and that X lies outside of the line
S1S2, i.e. X 6= H1 and X 6= H2. In view of the condition that |S1S2| > r1 + r2, the
whole circle of Apollonius (with diameter H1H2) lies in the exteriors of the circles k1
and k2. Indeed, the last fact follows from a known position of the homothety centres
H1 and H2 on the line S1S2: If for example r1 < r2, then the diameter H1H2 contains
the diameter of k1, while the diameter of k2 and the diameter H1H2 are disjoint. (See
also Remark below.)

The proven property implies that XS1S2 is a triangle with |XS1| > r1 and
|XS2| > r2. Thus there are points Y1 ∈ k1 and Y2 ∈ k2 lying on the segments
S1X and S2X, respectively. Since the equalities (2) are valid again, it is possible to
transform the equation (3) to equation (1). Consequently, the triangles XS1S2 and
XY1Y2 are similar (now by SAS theorem) and hence S1S2 ‖ Y1Y2. Therefore the
distances of Y1 and Y2 to the line S1S2 are equal which proves the required property
of the point X.

Answer. If r1 6= r2, the locus of points X is the circle of Apollonius which is
given given by the above equation (3), excepting the two points on the line S1S2. If
r1 = r2, the locus is the perpendicular bisector of the segment S1S2, with exception
of the midpoint of S1S2.

Remark. Let us prove directly the needed fact that any solution (i.e. point) X of
the equation (3) lies in the exteriors of the circles k1 and k2. It follows easily from (3)
that the differences |XS1| − r1 and |XS2| − r2 possess the same sign, which together
with the following inequality

(|XS1| − r1) + (|XS2| − r2) 6 |S1S2| − (r1 + r2) > 0,
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leads to the conclusion that both the differences are positive, i.e. |XS1| > r1 and
|XS2| > r2, as promised to be proven.

3. Find all triples of real numbers x, y and z for which

x(y2 + 2z2) = y(z2 + 2x2) = z(x2 + 2y2).

(Michal Rolínek)

Solution. If for example x = 0, we get a system 0 = yz2 = 2y2z which means
that one of the unknowns y and z vanishes and the other can be arbitrary. The
cases y = 0 or z = 0 are discussed similarly. Thus we have obtained three groups of
solutions (x, y, z) which are formed by triples (t, 0, 0), (0, t, 0) and (0, 0, t) respectively,
where t is any real number. Moreover, we have observed that all the other solutions
satisfy the condition xyz 6= 0, which is supposed to hold in what follows.

Factorizing the equation x
(
y2 + 2z2

)
= y
(
z2 + 2x2

)
yields (2x− y)(z2− xy) = 0.

Thus we distinguish two cases (depending on the fact which of the two factors van-
ishes).

(i) 2x− y = 0. After setting y = 2x the given system is reduced to the only
equation

2x(2x2 + z2) = 9x2z,

which can be simplified (by dividing x 6= 0) to

4x2 + 2z2 − 9xz = 0 or (x− 2z)(4x− z) = 0.

Thus the case (i) yields exactly two groups of solutions (2t, 4t, t) and (t, 2t, 4t), where
t is any real number.

(ii) z2 − xy = 0. Substituting z2 = xy into the given system, we now get the only
equation

xy(2x+ y) = z(x2 + 2y2),

which is (because of the inequality x2 + 2y2 > 0) equivalent to

z =
xy(2x+ y)

x2 + 2y2
.

At this moment we have to find when such a z obeys the condition z2 = xy. After
direct substitution we get the following condition on the unknowns x and y:

x2y2(2x+ y)2

(x2 + 2y2)2
= xy.

Dividing by xy 6= 0 and removing the fraction yields

xy(2x+ y)2 = (x2 + 2y2)2 or (4y − x)(x3 − y3) = 0.

Thus we conclude that either x = 4y, or x3 = y3, i.e. x = y.5 Returning to the formula
for z, we obtain z = 2y or z = x, according as x = 4y or x = y. Consequently, there

5 The reduction x3 = y3 to x = y is correct, because the mapping t 7→ t3 is increasing on the set R.
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are two groups of solutions in the case (ii), namely triples (4t, t, 2t) and (t, t, t), where
t is any real number.

Answer. All the solutions are (t, 0, 0), (0, t, 0), (0, 0, t), (t, t, t), (4t, t, 2t), (2t, 4t, t)
a (t, 2t, 4t), where t is any real number.

Remark. Let us describe a way how to avoid a more complicated case (ii) in the
above solution. Thanks to the cyclic symmetry, the given system yields even three
factorized equations

(2x− y)(z2 − xy) = 0, (2y − z)(x2 − yz) = 0, (2z − x)(y2 − zx) = 0. (1)

The case 2x− y = 0 were discussed as (i) in the above solution, the cases 2y − z = 0
and 2z − x can be treated analogously. Summarizing the three cases, we get all the
solutions indicated in Answer, excepting the triples (t, t, t). Thus for the remaining
case when

z2 − xy = x2 − yz = y2 − zx = 0 (2)

our task is to show that the only satisfactory triples are (x, y, z) = (t, t, t). However,
the last conclusion is an easy consequence of the dentity

(x− y)2 + (y − z)2 + (z − x)2 = 2(z2 − xy) + 2(x2 − yz) + 2(y2 − zx),

whose right-hand side vanishes by (2), and hence all the squares in the left-hand side
vanish as well, which completes the proof. Let us add a note that the system (2) can
be solved in another way: The equations in (2) easily imply that the values of x3, y3,
z3 are the same (namely, equal to the value of xyz), which happens only if x = y = z
by the footnote on previous page.

Another solution. To avoid unnecessary repetition from the above solution,
we will solve the problem under the condition that xyz 6= 0.

Dividing both sides of the given equations by xyz we obtain

y

z
+

2z

y
=
z

x
+

2x

z
=
x

y
+

2y

x
, (3)

which can be read as a coincidence of values of a function f(s) = s + 2/s in three
nonzero points s1 = y/z, s2 = z/x a s3 = x/y. Thus we first find when f(s) = f(t)
for two nonzero real numbers s and t. It follows from the identity

f(s)− f(t) = s+
2

s
− t− 2

t
=

(s− t)(st− 2)

st

that f(s) = f(t) if and only if s = t or st = 2. Consequently, the system (3) holds if
and only if the introduced numbers s1, s2, s3 possess the following property: si = sj
or sisj = 2, for any indices i and j. However, if there exists a permutation (i, j, k)
of (1, 2, 3) such that sisj = 2, then the identity sisjsk = 1 implies that sk = 1

2 and
hence si ∈ { 12 , 4} (because si = sk or sisk = 2). Thus the assumption sisj = 2
leads to the conclusion that (s1, s2, s3) is a permutation of ( 1

2 ,
1
2 , 4). It is easy to

check that exactly three such permutations are satisfactory and yield the solutions
(4t, t, 2t), (2t, 4t, t) and (t, 2t, 4t) of the given system. In the remaining case when
s1 = s2 = s3, the identity s1s2s3 = 1 implies that si = 1 for each i, which yields the
solutions (t, t, t).
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4. Six teams will take part in a volleyball tournament. Each pair of the teams
should play one match. All the matches will be realized in five rounds, each
involving three simultaneous matches on the courts numbered 1, 2 and 3. Find
the number of all possible draws for such a tournament. By a draw we mean
a table 5 × 3 in which an unordered pair of teams is written on the field (i, j),
where i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, 3}, if these two teams will meet each other
in the i-th round on the court j. You are allowed to write down the resulting
number as a product of prime factors (instead of writing its decimal expansion).

(Martin Panák)

Solution. We postpone the question of permutations of the five rounds and the three
courts to the end of our solution. Denoting first the teams by numbers 1, 2, 3, 4, 5,
6 (in a fixed way), we rearrange the five rounds of any satisfactory draw by means
of the following numbering: Let 1 and 2 be the rounds with matches of the pairs of
teams (1, 2) and (1, 3), respectively. If a pair (3, a) plays in the round 1 and if a pair
(2, b) plays in the round 2, then a, b are two distinct numbers from {4, 5, 6} (otherwise
the third pairs in the rounds 1 and 2 are identical). Let 3, 4 and 5 denote the rounds
with pairs (1, a), (1, b) and (1, c) respectively, where c ∈ {4, 5, 6} \ {a, b}. Up to this
moment, we have fixed an uncompleted draw

1: (1, 2), (3, a),
2: (1, 3), (2, b),
3: (1, a),
4: (1, b),
5: (1, c),

which can be extended to a the complete draw in the only one way:

1: (1, 2), (3, a), (b, c),
2: (1, 3), (2, b), (a, c),
3: (1, a), (2, c), (3, b),
4: (1, b), (2, a), (3, c),
5: (1, c), (2, 3), (a, b).

Since (a, b, c) is any permutation of (4, 5, 6), the total number of the complete draws
(written as above) is 3! = 6. Taking in account the number 5! of the possible per-
mutations of the five rounds and the number 3! of possible permutations of the three
courts, we conclude that the requested number of all draws is equal to

6 · 5! · 65 = 5! · 66 = 29 · 37 · 5 = 5 598 720.

Another solution. Let us denote the six teams by numbers 1, 2, 3, 4, 5 a 6
and construct first an “unordered” draw in which the rounds will be “numbered” by
the opponents of the team 1 — see the following table in which the other opponents
of the team 2 are denoted as a, b, c, d:

1: (1, 2),
2: (1, 3), (2, a),
3: (1, 4), (2, b),
4: (1, 5), (2, c),
5: (1, 6), (2, d).
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Note that (a, b, c, d) is a permutation of the quadruple (3, 4, 5, 6) and that the following
two restrictions are evident:

. 3 6= a, 4 6= b, 5 6= c and 6 6= d

. The two-element sets {3, a}, {4, b}, {5, c}, {6, d} are pairwise distinct.

It is clear that under these two conditions, the third pairs for the rounds 2–5 are
uniquely determined, as well as the remaining two pairs for the round 1. Consequently,
we have to calculate the number of permutations (a, b, c, d) of the quadruple (3, 4, 5, 6)
which satisfy the two above stated conditions.

Using the inclusion-exclusion principle we conclude that the first condition is
fulfilled by exactly nine permutations:

4!−
(

4 · 3!−
(

4

2

)
· 2! + 4− 1

)
= 9.

Moreover, exactly three of them do not satisfy the second condition, namely the
permutations (4, 3, 6, 5), (5, 6, 3, 4) and (6, 5, 4, 3). Thus the total number of the sat-
isfactory permutations equals 9− 3 = 6.

We have proved that there are six “unordered” draws in the above specified
sense. Combining this result with the idea of permuting the rounds and the courts,
we conclude that the requested number of the draws is equal to

6 · 65 · 5! = 5! · 66 = 29 · 37 · 5 = 5,598,720.

Remark. All the six satisfactory permutations (a, b, c, d) from the preceding so-
lutions are (4, 5, 6, 3), (4, 6, 3, 5), (5, 3, 6, 4), (5, 6, 4, 3), (6, 3, 4, 5), (6, 5, 3, 4). It is
possible to find them by an easy systematic examination (and thus to avoid the above
presented calculation based on the inclusion-exclusion principle). On the other hand,
the number 3 of the permutations (a, b, c, d) that satisfy the first, but not the second
condition, can be determined as the number of the “faulty” equalities

{3, a} = {4, b}, {3, a} = {5, c}, {3, a} = {6, d},

which are successively equivalent to the others:

{5, c} = {6, d}, {4, b} = {6, d}, {4, b} = {5, c}.
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Final Round of the 63rd Czech and Slovak
Mathematical Olympiad
(March 24–25, 2014)

MO
1. Let n be a natural number whose all positive divisors are denoted as d1, d2, . . . , dk

in such a way that d1 < d2 < · · · < dk (thus d1 = 1 and dk = n). Determine all
the values of n for which both equalities d5 − d3 = 50 and 11d5 + 8d7 = 3n hold.

(Matúš Harminc)

Solution. We distinguish whether n is odd or even.
(i) The case of n odd. Since all the di’s are odd too, it follows from 11d5+8d7 = 3n

that d7 | 11d5 as well as d5 | 8d7, hence d5 | d7. In view of d7 > d5, the relations
d5 | d7 | 11d5 imply that d7 = 11d5. Substituting this into 11d5 + 8d7 = 3n, we
obtain 99d5 = 3n or 33d5 = n. Thus the four numbers 1, 3, 11 and 33 are divisors
of n, more exactly all its divisors smaller that 50, since the fifth divisor d5 satisfies
d5 = d3 + 50 > 50. Consequently, it holds that d1 = 1, d2 = 3, d3 = 11, d4 = 33,
d5 = d3 + 50 = 61, and thus n = 33d5 = 33 · 61 = 2013. The number 2013 is
satisfactory indeed, because its first small divisors as indicated in the last sentence
and moreover, the subsequent divisors are d6 = 61 ·3 and d7 = 61 ·11; hence d7 = 11d5
as required.

(ii) The case of n even. Now the equality 11d5 + 8d7 = 3n implies that 2 | d5
and hence 2 | d5 − 50 = d3 as well. Since d1 = 1, d2 = 2 and d3 6= 3, we conclude
that either d3 = 4, or d3 = 2t, with some integer t > 2. But the last is impossible
(otherwise t is a divisor of n with d2 < t < d3, a contradiction), Therefore, we have
d3 = 4, d5 = d3 + 50 = 54 and hence 3 is a divisor of n between d2 and d3, a
contradiction. In this way, the nonexistence of any satisfactory even n is proven.

Answer. The problem has the only solution n = 2013.

Another solution. The divisors d5 and d7 of n, with d5 < d7, can be represented
as d5 = n/x and d7 = n/y, where x and y (x > y) are some positive divisors of n
again. Substituting this into 11d5 + 8d7 = 3n, we obtain (after cancelling n) an
equation 11/x + 8/y = 3 which can be solved in a standard way, for example by a
simple factorization:

8x = y(3x− 11) ⇔ 8(3x− 11) + 88 = 3y(3x− 11) ⇔ (3x− 11)(3y − 8) = 88.

The first equation implies that 3x− 11 > 0 and hence 3y − 8 > 0 as well. Note that
x > y + 1 yields 3x − 11 > 3y − 8 > 0. Taking in account the prime factorization
88 = 23 ·11, we conclude that the ordered pair (3x−11, 3y−8) of factors must belong
to the following set

{(88, 1), (44, 2), (22, 4), (11, 8)}.

21



However, congruences modulo 3 imply the only two pairs (88, 1) and (22, 4) are ad-
missible. The corresponding pairs (x, y) are (33, 3) and (11, 4), respectively.

If (x, y) = (33, 3), then d5 = n/33 (and d7 = n/3), thus 1, 3, 11 and 33 of divisors
of n which leads (as in the above solution) to the solution n = 2013.

If (x, y) = (11, 4), then d5 = n/11 and d7 = n/4, thus 1, 2, 4, 11, 22 and 44 are
divisors of n, which contradicts to d5 > 50.

2. We are given a segment AB in the plane. Consider a triangle XY Z with the
following properties: the vertex X is an interior point of the segment AB, the
triangles XBY and XZA are similar (4XBY ∼ 4XZA) and the points A, B,
Y , Z lie on a circle in this order. Find the locus of midpoints of the sides Y Z
of all such triangles XY Z. (Michal Rolínek, Jaroslav Švrček)

Solution. Let XY Z be a satisfactory triangle. Then the vertices Y and Z must lie
in the same half-plane with the boundary line AB. Denote by Y ′ the reflection of Y
through the line AB. Due to the presumed similarity, the angles XAZ a BYX are
congruent (Fig. 1) and hence |6 BAZ| = | 6 BY ′Z| as well. Using the well known in-
scribed angles property we conclude that the circumcircle k of 4ABZ passes not only
through the point Y , but also through the point Y ′. The line AB (as a perpendicular
bisector of the chord Y Y ′) passes through the centre O of the circle k and thus the
chord AB is a diameter of k. Since the segment AB is fixed, the circle k = ABY Z is
common for all satisfactory triangles XY Z and the midpoint M of Y Z must lie in the
interior of k. Since the both angles OMZ and OMY are right (Fig. 2), the (lesser)
angles AMO and BMO are acute and thus the point M must lie in the intersection
of the exteriors of Thales’ circles with diameters AO and BO. In what follows we will
show the the both derived necessary conditions determine the locus of all the possible
midpoints M .

A B
X

Y

Y ′

Z

k

Fig. 1

A B
X

Y

Y ′

Z

k
M

O

Fig. 2

So, let M be any point in the interior of k for which the both angles AMO
and BMO are acute (i.e. M lies in the exteriors of the circles with diameters AO
and BO). Consider a chord of k which passes through M perpendicularly to OM .
This chord does not intersect the diameter AB, because of the acute angles AMO
and BMO. Thus the endpoints of the chord with the midpoint M can be denoted as
Y and Z so that A, B, Y , Z lie on k in this order. If Y reflects to Y ′ through the
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diameter AB and if X denotes the intersection point of the segments AB a Y ′Z, then
the triangles XBY a XZA are similar as required (by theorem AA). This completes
the solution.

Conclusion. The locus under consideration is the interior of the highlighted region
bounded by the three circles with diameters AB, AO and BO, where O denotes the
midpoint of segment AB (Fig. 3).

A BO

Fig. 3

3. Let us call by an “edge” any segment of length 1 which is common to two adjacent
fields of a given chessboard 8×8 . Consider all possible cuttings of the chessboard
into 32 pieces 2 × 1 and denote by n(e) the total number of such cuttings that
involve the given edge e. Determine the last digit of the sum of the numbers n(e)
over all the edges e. (Michal Rolínek)

Solution. The total number of the vertical edges is 7 · 8 = 56 as well as the total
number of the horizontal edges. Thus the number of all the edges under consideration
is 56 · 2 = 112.

The number of edges, which are not involved in a given cutting, is equal to 32,
because each of these edges must coincide with the common segment of the two fields
forming one of the 32 resulting pieces 2 × 1. Thus each cutting gives a contribution
112 − 32 = 80 to the sum S of all the numbers n(e). Consequently, the sum S is a
multiple of 80 and thus its last digit is zero.

4. There are 234 visitors in a cinema auditorium. The visitors are sitting in n
rows, where n > 4, so that each visitor in the i-th row has exactly j friends in
the j-th row, for any i, j ∈ {1, 2, . . . , n}, i 6= j. Find all the possible values of n.
(Friendship is supposed to be a symmetric relation.) (Tomáš Jurík)

Solution. For any k ∈ {1, 2, . . . , n} denote by pk the number of visitors in the k-th
row. The stated condition on given i and j implies that the number of friendly pairs
(A,B), where A and B are from the i-th row and from j-th row respectively, is equal
to the product jpi. Interchanging the indices i and j, we conclude that the same
number of friendly pairs (A,B) equals ipj . Thus jpi = ipj or pi : pj = i : j, and
therefore, all the numbers pk must be proportional as follows:

p1 : p2 : · · · : pn = 1 : 2 : · · · : n.

Let us show that under this proportionality the visitors can be friendly in such
a way which ensures the property under consideration. Thus assume that for some
positive integer d, the equality pk = kd holds with any k ∈ {1, 2, . . . , n}. Let us
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start with the case d = 1 when the numbers of visitors in single rows are successively
1, 2, . . . , n. Then the stated property holds true if (and only if) any two visitors —
taken from distinct rows in the whole auditorium — are friends. In the case when
d > 1, let us divide all the visitors into d groups G1, G2, . . . , Gd so that for arbitrary
k = 1, 2, . . . , d, the numbers of visitors from the group Gk in single rows are succes-
sively 1, 2, . . . , n. It is evident that the stated property holds true under the following
condition: two visitors are friends if and only if they belong to the same group Gk.

It follows from the preceding that our task is to find such integer values of n,
n > 4, for which there exists a positive integer d satisfying the equation

d+ 2d+ · · ·+ nd = 234 or dn(n+ 1) = 468.

Thus we look for all divisors 468 = 22 ·32 ·13 which are of the form n(n+1). Inequality
22 · 23 > 468 implies that n < 22 and hence n ∈ {4, 6, 9, 12, 13, 18}. It is easy to see
that the only satisfactory n equals 12 (which corresponds to d = 3).

Answer. The unique solution is n = 12.

5. We are given an acute-angled triangle ABC. Denote by k the circle with diam-
eter AB. A circle touching the bisector of the angle BAC at the point A and
passing through the point C meets the circle k in a point P , P 6= A. Similarly, a
circle touching the bisector of the angle ABC at the point B and passing through
the point C meets the circle k in a point Q, Q 6= B. Prove that the lines AQ and
BP intersect each other on the bisector of the angle ACB. (Peter Novotný)

Solution. Besides the Thales’ circle k, denote as lA = APC and lB = BQC the
other two circles under consideration. Let us deal, for example, with the circle lB
drawn in Fig. 4. In what follows the interior angles of ∆ABC are denoted as usual.

A B

C

Q

β/2

k

lB

kB

I

Fig. 4

Let us explain that it is true indeed what the figure suggests. First of all, the
point Q lies in the half-plane BCA, because the local arc BC of the circle lB has the
following property: as its point X moves from C to B, the angle AXB varies from an
acute angle γ to an obtuse angle 180◦−β/2, and hence the Thales’ circle k meets the
arc BC in an interior point Q. Applying the properties of inscribed and subtended
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angles to the chord BC of the circle lB , we conclude that |6 BQC| = 180◦ − β/2 and
hence | 6 AQB|+ |6 BQC| = 270◦−β/2 > 180◦. Consequently, Q is a point of the half-
plane ACB which lies in the interior of the triangle ABC and the convex angle AQC
equals 90◦+β/2. As known, the last is a measure of the angle AIC, where I denotes
the incentre of ∆ABC (indeed, |6 AIC| = 180◦ − α/2 − γ/2 = 90◦ + β/2). In this
way, the congruence of the angles AQC and AIC is proven and hence the points Q
and I lie on the same arc AC of a new circle kB = ACI. Therefore, the line AQ is
the radical axis of the circles k and kB . Analogously, the line BP is the radical axis
of the circles k and kA = BCI.

It remains to note that the intersection point of the lines AQ and BP (treated
as the above radical axes) has the same power with respect to the circles kA and kB ,
whose radical axis is the line CI, i.e. just the bisector of the angle ACB. This
completes our solution.

Remark. Let us explain once again that the point Q lies in the open half-plane
BCA. The intersection point Q of the circles k and lB is clearly an interior point of the
half-plane ABC which lies between the two lines tangent to k and lB at the point B.
Note that both the vertex C of the acute-angled triangle ABC and the centre SB of
the circle lB lie in the exterior of the Thales’ circle k. An arc of k lies in the triangle
BSBC which however does not contain any point of the circle lB , excepting the points
B and C. Consequently, the point Q has to lie in the half-plane BCA.

6. Let a, b be non-negative real numbers. Prove the inequality

a√
b2 + 1

+
b√

a2 + 1
>

a+ b√
ab+ 1

and find when the equality holds. (Tomáš Jurík, Jaromír Šimša)

Solution. It is evident that the inequality under consideration becomes an equality
when a = 0, b = 0 or a = b. To prove that otherwise the strong inequality holds, it
suffices to deal with the case a > b > 0 and (after removing the fractions) to show
that

a
√
a2 + 1

√
ab+ 1 + b

√
b2 + 1

√
ab+ 1 > (a+ b)

√
a2 + 1

√
b2 + 1.

Distributing the right-hand side and regrouping the terms we get

a
√
a2 + 1

(√
ab+ 1−

√
b2 + 1

)
> b
√
b2 + 1

(√
a2 + 1−

√
ab+ 1

)
.

Multiplying the differences of the square roots by their sums as the denominators of
new installed fractions, we obtain

a
√
a2 + 1 · b(a− b)√

ab+ 1 +
√
b2 + 1

> b
√
b2 + 1 · a(a− b)√

a2 + 1 +
√
ab+ 1

.

Dividing both sides by the positive number ab(a−b) and removing the fractions again,
we finally arrive at an equivalent inequality√

a2 + 1
(√

a2 + 1 +
√
ab+ 1

)
>
√
b2 + 1

(√
b2 + 1 +

√
ab+ 1

)
,
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which easily follows by an easy comparison of the both sides “term by term” (because
our assumption a > b implies that

√
a2 + 1 >

√
b2 + 1). This completes the proof

of the given inequality. As we have shown, the only cases of the equality are a = 0,
b = 0 and a = b.

Another solution. We exclude the cases a = 0 and b = 0 (when the inequal-
ity becomes an equality) from our considerations. Let us apply a Cauchy-Schwarz
inequality in the form (a

u
+
b

v

)
(au+ bv) > (a+ b)2,

with positive coefficients u =
√
b2 + 1 and v =

√
a2 + 1:(

a√
b2 + 1

+
b√

a2 + 1

)(
a
√
b2 + 1 + b

√
a2 + 1

)
> (a+ b)2. (1)

Another Cauchy-Schwarz inequality yields an upper bound for the second factor from
the-left hand side of (1):

a
√
b2 + 1 + b

√
a2 + 1 =

√
a
√
ab2 + a+

√
b
√
a2b+ b 6

6
√
a+ b

√
ab2 + a+ a2b+ b =

√
a+ b

√
(a+ b)(ab+ 1) = (a+ b)

√
ab+ 1.

Consequently, the first factor in (1) has a lower bound

a√
b2 + 1

+
b√

a2 + 1
>

(a+ b)2

a
√
b2 + 1 + b

√
a2 + 1

>
a+ b√
ab+ 1

,

which is the desired inequality. Since (1) becomes an equality if and only if the
positive coefficients u and v are the same, i.e.

√
b2 + 1 =

√
a2 + 1 in our situation,

the equality a = b is the third (and last) case (next to a = 0 and b = 0 from the
introductory sentence) when the proven inequality holds as an equality.

Another solution. Let us exclude the obvious cases a = 0, b = 0, a = b and let
us transform the (strong) inequality under consideration into the following equivalent
form:

a

a+ b
· 1√

b2 + 1
+

b

a+ b
· 1√

a2 + 1
>

1√
ab+ 1

. (2)

The last left-hand side can be read as that of the (strong) Jensen inequality

pf(α) + qf(β) > f(pα+ qβ), (3)

with positive coefficients p = a/(a+ b) and q = b/(a+ b) (which satisfy p+ q = 1 as
required), applied to the function f(x) = 1/

√
x at the points α = b2+1 and β = a2+1.

Since the function f is strictly convex6 on the interval (0,+∞) and since the points
α and β are assumed to be distinct, the Jensen inequality (3) holds.

It remains to verify that also the right-hand sides of (2) and (3) are identical.
This is easy:

f(pα+ qβ) = f
( a

a+ b
(b2 + 1) +

b

a+ b
(a2 + 1)

)
=

= f

(
a+ ab2 + b+ a2b

a+ b

)
= f(ab+ 1) =

1√
ab+ 1

.

6 The shape of the curve y = x−
1
2 is well known from high-school textbooks.
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