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1. Some objects are in each of four rooms. Let n > 2 be an integer. We move one

n-th of objects from the first room to the second one. Then we move one n-th
of (the new number of) objects from the second room to the third one. Then
we move similarly objects from the third room to the fourth one and from the
fourth room to the first one. (We move the whole units of objects only.) Finally
the same number of the objects is in every room. Find the minimum possible
number of the objects in the second room. For which n does the minimum come?

(Vojtech Bálint, Michal Rolínek)

Solution. Let us compute backwards. Firstly we find the number of the objects in
two rooms before the move. Let a and b be number of the objects in the rooms A
and B before the move. This number after the move we denote by a′ and b′. By the
conditions

a′ =
n− 1

n
a, b′ = b+

1

n
a

holds. From the first equation and an identity a+ b = a′ + b′ we obtain

a =
n

n− 1
a′, b = b′ − 1

n− 1
a′.

Now let M be the final number of the objects in every room after the fourth
move. By this identity we can compute the initial number of objects in every room
in terms of M and n:

Finally: M M M M

before 4→ 1:
n− 2

n− 1
M, M, M,

n

n− 1
M ;

before 3→ 4:
n− 2

n− 1
M, M,

n

n− 1
M, M ;

before 2→ 3:
n− 2

n− 1
M,

n

n− 1
M, M, M ;

before 1→ 2:
n(n− 2)

(n− 1)2
M,

(n− 1)2 + 1

(n− 1)2
M, M, M.
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Since the number of objects in the first room was positive, n > 3 holds. Now we
can easily find the minimum of

V2 =
(n− 1)2 + 1

(n− 1)2
M.

The difference between numerator and denominator is 1, so the fraction is irreducible.
Since V2 is integer it must beM = k(n−1)2 for proper k, therefore V2 = k

(
(n−1)2+1

)
.

For n > 3 we can estimate (n − 1)2 + 1 > 5, so V2 > 5 too. Using n = 3, k = 1
and M = 4 we obtain V2 = 5 and we can easily check that the quadruple (3, 5, 4, 4)
satisfies the problem: it transforms to quadruple (2, 6, 4, 4), then (2, 4, 6, 4), after that
(2, 4, 4, 6) and finally (4, 4, 4, 4). So the minimal numbers of objects in the second
room is 5 and we can obtain it only for n = 3 because for n > 4 is V2 > 32 + 1 = 10.

2. Find the least real m such that there exist reals a and b for which the inequality

|x2 + ax+ b| 6 m

holds for all x ∈ 〈0, 2〉. (Leo Boček)

Solution. Notice that no negative numberm satisfies the problem evidently (absolute
value is non-negative number).

Now we interpret the problem geometrically. A graph of some function y =
x2 + ax + b lies in a horizontal strip between lines y = +m and y = −m and in the
interval 〈0, 2〉. Our aim is to find the closest strip which contains the graph of such
quadratic function in the interval 〈0, 2〉.

O x

y

1 2

y = −m

y = +m

Fig. 1

The function
f(x) = (x− 1)2 − 1

2 = x2 − 2x+ 1
2 ,

seems to be a good candidate for such the closest strip. Such function has a = −2,
b = 1

2 and it satisfies (to be shown bellow) inequalities − 1
2 6 f(x) 6 1

2 .
Really, this inequalities are equivalent to the inequalities 0 6 (x−1)2 6 1, which

are evidently fulfilled for x ∈ 〈0, 2〉. Quadratic function f(x) = x2 − 2x + 1
2 thus

satisfies the conditions of the problem for m = 1
2 .

In the second part of the solution we will show that there is no quadratic function
satisfying the problem for any m < 1

2 .
The crucial fact will be that at least one from differences f(0)− f(1) and f(2)−

f(1) is greater or equal to 1 for an arbitrary function f(x) = x2 + ax + b. This fact
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will imply that width of the closest strip will be greater or equal to 1 an this will
exclude the values m < 1

2 . For f(0)−f(1) > 1 we obtain the desired estimate 2m > 1
easily from the well-known triangle inequality |a− b| 6 |a|+ |b|:

1 6 |f(0)− f(1)| 6 |f(0)|+ |f(1)| 6 2m.

Similarly we estimate for f(0)− f(1) > 1.
Now it remains to verify at least one from inequalities f(0) − f(1) > 1 and

f(2)− f(1) > 1 for arbitrary f(x) = x2 + ax+ b. The values

f(0) = b, f(1) = 1 + a+ b, f(2) = 4 + 2a+ b,

yields
f(0)− f(1) = −1− a > 1 ⇔ a 6 −2,
f(2)− f(1) = 3 + a > 1 ⇔ a > −2.

So at least one from inequalities f(0)−f(1) > 1 and f(2)−f(1) > 1 is true (regardless
of the choice a, b).

Conclusion. The desired minimal value of m is 1
2 .

3. Let ABC be a right-angled triangle with a hypotenuse AB and longer leg BC.
Let D be a foot of an altitude from the vertex C. Circle k with the center D and
the radius CD intersects the leg BC in a point Q and line AB in points E and
F (E 6= F ), where F is a point on the hypotenuse AB. Segment QE intersects
the leg AC in a point P . Prove that PE = QF . (Jaroslav Švrček)

Solution. The circle k is the Thales’ circle with the diameter EF and the center D.
A triangle EFC is the isosceles right-angled triangle, so EC = EF . We will show
that triangles EPC and FQC are congruent, which will prove the statement of the
problem.

A B

C

DE F

P

Q
k

Fig. 2

Angles CEQ and CFQ are congruent as they are inscribed angles subtended the
chord CQ of the circle k. Both angles ECF and ACB are congruent (right angles), so
their remaining non-overlapping parts (angles ECF = ECP and ACB = FCQ) are
also congruent. This proves, that triangles EPC and FQC are congruent by A–S–A.
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4. Nela and Jane choose positive integer k and then play a game with a 9×9 table.
Nela selects in every of her moves one empty unit square and she writes 0 to it.
Jane writes 1 to some empty (unit) square in every her move. Furthermore k
Jane’s moves follows each Nela’s move and Nela starts. If sum of numbers in
each row and each column is odd anytime during the game, Jane wins. If girls
fill out the whole table (without Jane’s win), Nela wins. Find the least k such
that Jane has the winning strategy. (Michal Rolínek)

Solution. Let us show at first that Jane wins for k = 3. Let us assume 3×3 squares
A1, A2 and A3 (see the picture). We will call the 3×3 square covered if just one 1 is
in each its row and column. If Jane covers squares A1, A2 and A3 without writing to
other squares, she wins, because sums in all rows and columns are odd number 1.

A1

A2

A3

Fig. 3

It is obvious that if at most one 0 (and no 1) is written in any 3×3 square after
Nela’s move, Jane can cover this square because of k = 3. Jane has the following
strategy: If Nela writes 0 to any uncovered square A1, A2 or A3, Jane covers it
immediately. In the opposite case Jane covers any of the uncovered 3×3 squares.
Jane thus wins after three her triples of moves.

We will show that Nela has winning strategy for k ∈ {1, 2}. Let us realize that if
Jane has some winning move, just 8 rows and 8 columns have odd sum before Jane’s
move, and the winning Jane’s move is writing 1 to the intersection of the only one
“even” row with the only one “even” column. This implies that if Jane has winning
move, this move is unique.

Now it is obvious Nela’s winning strategy for k = 1. If Jane has winning move
after her move, Nela writes 0 to this square and Jane looses her unique chance for
win. In the opposite case Nela writes 0 to some empty square. This move doesn’t
change parity of sums in rows and columns and Jane still hasn’t winning move. This
strategy allows Nela to fill out whole table without giving Jane chance to win.

In the case k = 2 Nela will use the same strategy as for k = 1. This strategy
doesn’t give Jane chance to win in her first move. In the second move Jane can’t
win because after that move the table contains even number of 1’s which excludes
possibility to be odd number 1’s in every of (odd number) nine rows.

Conclusion. The least value k, for which Jane has winning strategy, is k = 3.
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5. Let ABC be a triangle with the shortest side BC. Let X, Y , K, L be a points
on sides AB, AC and on ray’s opposite to rays BC, CB respectively such that
BX = BK = BC = CY = CL. Line KX intersects line LY in a point M .
Prove that centroid of a triangle KLM coincides with incentre of the triangle
ABC. (Tomáš Jurík)

Solution. Since ABC is an external angle of the isosceles triangle XKB with the
apex B (see the picture), a line KX is parallel to a bisectrix of the angle ABC.

A

B CK L

L2

L1

M
X Y

Fig. 4

The ratio LB : LK = 2 : 3 yields, that the bisectrix of ABC meets the centroid
of the triangle KLM . If we denote LL1 its median and L2 its intersection with the
bisectrix of ABC then we obtain

LL2

LL1
=
LB

LK
=

2

3
.

from similarity of the triangles 4LBL2 ∼ 4LKL1 (by A–A). So the point L2 divides
the median LL1 in the same ratio as the centroid an therefore it is the centroid of the
triangle KLM .

If follows from the symmetry of the problem, that bisectrix of the angle BCA
meets the centroid of the triangle KLM . And the fact, that intersection of the
bisectrices is the incentre, proves the claim of the problem.

6. A product
1 · 2 · 3 · . . . · n

is written on a blackboard. For which positive integers n > 2 can we append the
exclamation mark to some factors and change it to factorials in such a way that
the final product will be a square? (Michal Rolínek)

Solution. Let us denote vp(n) the highest power of a prime p which divides positive
integer n. This function has obviously the following properties:

– For all primes p and positive integers n is vp(n) non-negative integer.
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– For all positive integers m, n and all primes p is vp(mn) = vp(m) + vp(n).
– For all primes p is vp(p!) = vp(p) = 1.
– For all primes p is vp((p+ 1)!) = 1, vp(p+ 1) = 0.
– For all primes p and all positive integers n < p is vp(n!) = vp(n) = 0.
– Positive integer n is a square if and only if vp(n) is even (including zero) for all

primes p.
Let us denote S = n! the initial value of the product on the table and S′ its final

value after adding factorials. We can easy to see from the properties of vp that for n
is equal to any prime p we obtain vp(S) = vp(p!) = 1 and vp(S′) = 1, because adding
factorials does not change the amount of the prime p (= n) in the final product on
the blackboard. The number vp(S′) is then odd and therefore S′ is not a square.

Let us assume that n is a composite number (so n > 4) in whole of the following
part. We will show that we can add factorials in such a way that the final product

S′ = f1 · f2 · f3 · . . . · fn,

will be a square, where fk is either k or k! for all k. It is equivalent to vp(S
′) is

even for all primes p. Since n is not a prime, only primes less than n occur in the
product S′. As every such primes p are not in factors f1, f2, . . . , fp−1 and the prime p
occurs in fp only once, the final power vp(S′) is the same as in a “reduced” product

p · fp+1 · fp+2 · . . . · fn. (1)

How can we provide that every prime p < n will occur in the corresponding product (1)
with even power? Since in the second factor fp+1 from (1) occurs the prime p either
once (in the case fp+1 = (p + 1)!) or the prime p does not occure (if fp+1 = p + 1),
we can provide “good” occurrence of p by choice of fp+1 independently on succeeding
values fp+2, . . . , fn.*

Foregoing analysis gives us construction of the required choice of factorials. Ini-
tially we choose fk ∈ {k, k!} arbitrarily for all k 6 n such that k − 1 is not a prime.
The other fk, it is fp+1, where p is arbitrary prime less than n, will be chosen “back-
wards”, from the biggest such prime p to the smallest prime p = 2.** For the biggest
unchosen fp+1 we find parity of vp(fp+2 . . . fn), in odd case we choose fp+1 = p + 1,
in even case we choose fp+1 = (p+ 1)! and so on.

This finishes the construction of S′ and solution of the problem too.

Conclusion. Desired n > 2 are all composite numbers.

* It is correct also for a prime p = n − 1, where a factor fp+1 = fn is the last factor in (1); in
this case we choose fn = n!.

** The choice of f3 will be the last, it corresponds to the smallest prime p = 2.
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First Round of the 65th Czech and Slovak
Mathematical Olympiad
(December 8th, 2015)

MO
1. Nice prime is a prime equal to the difference of two cubes of positive integers.

Find last digits of all nice primes. (Patrik Bak, Michal Rolínek)

Solution. Firstly, let us note that 53 − 43 = 61, 23 − 13 = 7 and 33 − 23 = 19 are
nice primes, so 1, 7 and 9 belong to desired digits. We show that they are all desired
digits.

Let p = m3 − n3 be a nice prime, where m > n are positive integers. Second
factor in rewriting

p = m3 − n3 = (m− n)(m2 +mn+ n2),

is greater than 1, thus the first one is 1 and therefore m = n+ 1. After substitution
we obtain

p = 3n2 + 3n+ 1. (1)

An estimate 3n2 + 3n+ 1 > 6 gives that the prime p is odd and greater that 5.
This excludes 0, 2, 4, 5, 6 a 8 as the last digits and 3 stays the only remaining digit
to exclude.

It is sufficient to find remainders of the numbers 3n2 + 3n + 1 after division by
5. For remainders 0, 1, 2, 3 and 4 of n we obtain remainders 1, 2, 4, 2, 1 of (1) which
ones really exclude the last digit 3.

Answer. The last digits of the nice primes are 1, 7 and 9.

2. Positive real numbers a, b, c, d satisfy equalities

a = c+
1

d
and b = d+

1

c
.

Prove an inequality ab > 4 and find a minimum of ab+ cd. (Jaromír Šimša)

Solution. To prove the inequality ab > 4 we substitute from the equalities. We so
obtain an estimate

ab =
(
c+

1

d

)(
d+

1

c

)
= cd+ 1 + 1 +

1

cd
> 4,

where we use in the last inequality well-known fact that x + 1/x > 2 holds for all
positive reals x = cd > 0.

7



To find the minimum we use similar way. Substitution for a and b yields

ab+ cd =
(
2 + cd+

1

cd

)
+ cd = 2 + 2cd+

1

cd
.

Now we use an inequality x + y > 2
√
xy which holds true for any non-negative

reals x, y. The choice x = 2cd, y = 1/cd follows

2cd+
1

cd
> 2
√
2.

Now we see that ab + cd > 2(1 +
√
2). To prove that it is the desired minimum we

find some a, b, c, d such that they makes an equality in the inequality.
The equality comes in the use inequality if and only if x = y, it is 2cd = 1/cd. It

is true e.g. for c = 1, d =
√
2/2 and for that values we find a = 1+

√
2, b = 1+

√
2/2.

Such quadruple satisfies the desired equalities and it holds ab+ cd = 2(1 +
√
2) too.

3. For a trapezoid ABCD (AB ‖ CD) it holds BC = AB + CD. Prove that
(i) there is a point of a circle with diameter BC on the leg AD,
(ii) there is a point of a circle with diameter AD on the leg BC.

(Josef Tkadlec)

Solution. (i) Let M , N be the centers of the legs BC, AD. We show that the
point N lies on the circle with diameter BC.

A well-known identity yields

MN =
AB + CD

2
=

1

2
BC.

It means that the point N has the same distance from the center M of the circle with
diameter BC as radius of that circle. So point M lies on that circle.

(ii) With respect to the given condition we can find a point E on the legs BC
such that |BE| = |AB| and |EC| = |CD| (Fig. 1). We show that 6 AED = 90◦ and
so the point E is the desired point on the Thales’ circle with diameter AD.

A B

CD

E

MN

Fig. 1
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The triangles ABE, ECD are isosceles and the lines AB and CD are parallel,
thus the fact follows:

6 AED = 180◦ − 6 AEB − 6 CED =

= 1
2

(
(180◦ − 2 6 AEB) + (180◦ − 2 6 CED)

)
=

= 1
2 (
6 ABE + 6 DCE) = 90◦.

So we finished the second part.

Remark. If we start from proof that the triangle AED is right-angled one, we
will become conscious of fact that its mutually perpendicular axes of sides AE and
ED meet the center N of its circumscribed circle. It means that a triangle BCN
is right-angled one too, so the circle with diameter BC meets the center N of the
side AD.
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Second Round of the 65th Czech and Slovak
Mathematical Olympiad
(January 12th, 2016)

MO
1. There are different positive integers written on the board. Their (arithmetic)

mean is a decimal number, with the decimal part exactly 0,2016. What is the
least possible value of the mean? (Patrik Bak)

Solution. Let s be the sum, n the number and p the integer part of the mean of the
numbers on the board. Then we can write

s

n
= p+

2016

10 000
= p+

126

625
,

which gives
625(s− pn) = 126n.

Numbers 126 and 625 are coprime, thus 625 | n. Therefore n > 625.
The numbers on the board are different, that is

p =
s

n
− 126

625
>

1 + 2 + · · ·+ n

n
− 126

625
=
n(n+ 1)/2

n
− 126

625
>

625 + 1

2
− 126

625
> 312.

The integer p is thus at least 313 and the value of the mean at least 313,2016.
This value can be attained by numbers 1, 2, . . . , 624 and 751. We get

1 + 2 + · · ·+ 624 + 751

625
=

312 · 625 + 751

625
= 313 +

126

625
= 313,2016.

2. On the unit square ABCD is given point E on CD in such a way, that |6 BAE| =
60◦. Further let X be an arbitrary inner point of the segment AE. Finally let
Y be the intersection of a line, perpendicular to BX and containing X, with the
line BC. What is the least possible length of BY ? (Michal Rolínek)

Solution. Let us consider the Thales circle over BY , which is circumscribed to BYX.
This circle contains X and touches AB in B. Of all such circles is the one which
touches AE (and it has to be in X) obviously the one with the least diameter (let us
call the circle k). This circle is thus inscribed to the equilateral triangle AA′F where
A′ is the image of A in the point symmetry with respect to B and F lies on the half
line BC (see Fig. 1; there you can see one of the circles with smaller diameter than k as
well). The center of k is the center of mass of the triangle AA′F , equilateral triangle
with sides of length 2, thus the diameter of k is BY = 2

3

√
3 and the corresponding X

is a center of AF , that is it belongs to the segment AE, since |AX| = 1 < |AE|.
Answer. The least possible length of BY is 2

3

√
3.
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A B

C
D E

F

A′

X

Y

k

Fig. 1

3. In how many ways can you partition the set {1, 2, . . . , 12} into six mutually dis-
joint two-element sets in such a way that the two elements in any set are coprime?

(Martin Panák)

Solution. No two even numbers can be in the same set (pair). Let us call partitions
of {1, 2, . . . , 12} with this property, that is one even and one odd number in each pair,
even-odd partitions. The only further limitations are, that 6 nor 12 cannot be paired
with 3 or 9, and 10 cannot be paired with 5.

That means, that odd numbers 1, 7 and 11 can be paired with numbers 2, 4 ,6,
8, 10, 12, numbers 3 and 9 with 2, 4, 8, 10 and number 5 can be paired with 2, 4, 6,
8, 12. We cannot use the product rule directly, we distinguish two cases: 5 is paired
with 6 or 12, in the second one 5 is paired with one of 2, 4, and 8. The possible
pairings are 2 · 4 · 3 · 3 · 2 · 1 = 144 in the first case, 3 · 3 · 2 · 3 · 2 · 1 = 108 in the second
case. Together 144 + 108 = 252 pairings.

4. Find the least real m, for which there exists real a, b such, that

|x2 + ax+ b| 6 m(x2 + 1)

holds for any x ∈ 〈−1, 1〉. (Jaromír Šimša)

Solution. Let us assume that a, b, m satisfy the condition:

∀x ∈ 〈−1, 1〉 : |f(x)| 6 m(x2 + 1), kde f(x) = x2 + ax+ b.

Firstly we prove that at least one of the f(1)− f(0) > 0 and f(−1)− f(0) > 0 holds:
for arbitrary f(x) = x2 + ax+ b there is

f(0) = b, f(1) = 1 + a+ b, f(−1) = 1− a+ b,

and
max

(
f(1)− f(0), f(−1)− f(0)

)
= max(1 + a, 1− a) = 1 + |a| > 1.
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Our assumption means |f(1)| 6 2m, |f(−1)| 6 2m a |f(0)| 6 m. Consequently

1 6 1 + |a| = f(1)− f(0) 6 |f(1)|+ |f(0)| 6 2m+m = 3m, (1)

or
1 6 1 + |a| = f(−1)− f(0) 6 |f(−1)|+ |f(0)| 6 2m+m = 3m. (2)

In both cases we get m > 1
3 .

We show, that m = 1
3 fulfills the problem conditions. For this m either (1) or (2)

is equality, that is a = 0, −f(0) = |f(0)| and |f(0)| = m = 1
3 , thus b = f(0) = − 1

3 .
We will verify, that the function f(x) = x2− 1

3 pro m = 1
3 satisfies the conditions

of the problem: The inequality |x2− 1
3 | 6

1
3 (x

2+1) is equivalent with the inequalities

−1

3
(x2 + 1) 6 x2 − 1

3
6

1

3
(x2 + 1) or − x2 − 1 6 3x2 − 1 6 x2 + 1

which are equivalent to 0 6 x2 6 1, which is evidently fulfilled on 〈−1, 1〉.
Answer. The thought m is 1

3 .
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Final Round of the 65th Czech and Slovak
Mathematical Olympiad

(April 4–5, 2016)

MO
1. Let p > 3 be a prime. Find the number of ordered sextuples (a, b, c, d, e, f) of

positive integers, whose sum is 3p, and all the fractions

a+ b

c+ d
,

b+ c

d+ e
,

c+ d

e+ f
,

d+ e

f + a
,

e+ f

a+ b

are integers. (Jaromír Šimša, Jaroslav Švrček)

Solution. Taking the product of the 1st, the 3rd and the 5th fractions reveals that
their value has to be 1, that is

a+ b = c+ d = e+ f = p. (1)

the form of the second and of the fourth fraction implies

f + a | d+ e and d+ e | b+ c. (2)

that is first f + a is at most the arithmetic mean of its multiples,

f + a 6 1
3 ((f + a) + (d+ e) + (b+ c)) = p, (3)

and
f + a | (f + a) + (d+ e) + (b+ c) = 3p.

Thus f + a divides 3p and is in the interval 〈2, p〉. Consequently either f + a = p or
f + a = 3. We deal separately with these cases.

(i) Let f + a = p. Because of (3) there is f + a = d + e = b + c = p, which
together with (1) gives p− 1 solutions of the form

(a, b, c, d, e, f) = (a, p− a, a, p− a, a, p− a), where a ∈ {1, 2, . . . , p− 1}.

(ii) Let f + a = 3. Then {a, f} = {1, 2}.
Firstly let a = 1 and f = 2. According to (1) then b = p− 1 and e = p− 2, and

(2) has the form

3 | d+ (p− 2) and d+ (p− 2) | (p− 1) + c. (4)

In analyzing (4) we distinguish between d = 1 and d > 2.
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If d = 1 then c = p− 1 and (4) reads

3 | p− 1 a p− 1 | 2(p− 1).

While the right relation always holds, the left one holds only for p = 3q + 1 (q is a
suitable positive integer). For such prime numbers we get considering (1) solutions

(a, b, c, d, e, f) = (1, p− 1, p− 1, 1, p− 2, 2).

If d > 2 we show first, that the right relation in (4) is satisfied if and only if
d+ (p− 2) = (p− 1) + c or d = c+ 1. d > 2 namely implies c = p− d 6 p− 2, thus

d+ (p− 2) > p and (p− 1) + c 6 2p− 3 < 2p

and d + (p − 2) = (p − 1) + c. From c + d = p and d = c + 1 we get c = 1
2 (p − 1)

a d = 1
2 (p+ 1). Since d+ (p− 2) = 3

2 (p− 1), the left relation in (4) is fulfilled and

(a, b, c, d, e, f) = (1, p− 1, 12 (p− 1), 12 (p+ 1), p− 2, 2).

is a solution.
Finally a = 2 and f = 1. In this case b = p− 2 a e = p− 1, and (2) reads

3 | d+ (p− 1) and d+ (p− 1) | (p− 2) + c. (5)

Because
d+ (p− 1) > p and (p− 2) + c < 2p,

the right relation in (5) holds if and only if d+(p−1) = (p−2)+c, that is iff c = d+1.
Together with c+ d = p we get c = 1

2 (p+1) and d = 1
2 (p− 1), thus the right relation

in (5) holds as well, and the last solution is

(a, b, c, d, e, f) = (2, p− 2, 12 (p+ 1), 12 (p− 1), p− 1, 1).

Conclusion. All the solutions found are apparently mutually different and their
number depends on p modulo 3 (p > 3): If p = 3q + 1 then there are p+ 2 sextuples,
if p = 3q + 2, there are p+ 1 sextuples.

2. Let r and ra be the radii of inscribed circle and excircle opposite A of the triangle
ABC. Show, that if

r + ra = |BC|,

then the triangle is right-angled. (Michal Rolínek)

Solution. Let us use the standard notation of the inner angles of the triangle ABC,
further let I be the incenter and Ia be the excenter (of the excircle opposite A) and
let D and E be in order the touching points of the thought circles. Since the bisectors
BI and BIa of the supplementary angles are perpendicular to each other (as well
as CI and CIa), the points B, C, I a Ia lie on the circle with the diameter IIa.
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Thus D and E, the orthogonal projections of I and Ia onto the secant BC, are point
reflections of each other with respect to the center of BC.

The right triangles BID and IaBE are obviously similar and

|BD| : |ID| = |IaE| : |BE| or |BD| · |BE| = |ID| · |IaE|

considering the mentioned point reflection also

|BD|+ |BE| = |BD|+ |CD| = |BC| = r + ra = |ID|+ |IaE|.

B C
1
2β

1
2γ

D

I

ra

r

E

Ia

Fig. 1

The two equations imply that a pairs (|ID|, |EIa|) and (|BD|, |BE|) are roots of
the same quadratic equation, that is |ID| = |BD| or |ID| = |BE|.

|ID| = |BD| means the right-angled triangle BID is isosceles, which is β = 90◦.
Similarly, if |ID| = |BE| that is |ID| = |CD| (D and E are point reflections in the
mentioned reflection) means the right triangle CID is isosceles, that is γ = 90◦.

In both cases the triangle ABC is right-angled.

3. Mathematics clubs are very popular in certain city. Any two of them have at
least one common member. Prove, that one can distribute rulers and compasses
to the citizens in such a way that only one citizen gets both (compass and ruler)
and any club has to his disposal both, compass and ruler, from its members.

(Josef Tkadlec)

Solution. Let us consider the club K with the least number of its members (in case
there is more such clubs, we take any). We give to one of it’s members (let us call him
Jacob) both, a compass and a ruler. Each of the other members of the club will get a
compass. Any other citizen will get a ruler. We show, that this distribution comply
with the conditions of the problem: Any club, which has Jacob as its member, has
certainly both instruments.

If there is a club, where Jacob does not belong, then it has at least one common
member with the club K, that is there is at least a compass at disposal in the club. If
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there were no ruler in the club, it would mean that it is a “subclub” of K and therefore
has at least one member (Jacob) less than K, which is a contradiction with the choice
of K. The described distribution really satisfies the conditions of the problem.

4. For positive a, b, c it holds

(a+ c)(b2 + ac) = 4a.

Find the maximal possible value of b + c and find all triples (a, b, c), for which
the value is attained. (Michal Rolínek)

Solution. We use the well know inequality a2 + b2 > 2ab to adjust the given one:

4a = (a+ c)(b2 + ac) = a(b2 + c2) + c(a2 + b2) > a(b2 + c2) + 2abc = a(b+ c)2.

We can see, that b+c 6 2, and also that the equality holds if and only if 0 < a = b < 2
a c = 2− b > 0. Thats it.

5. There is |BC| = 1 in a triangle ABC and there is a unique point D on BC such
that |DA|2 = |DB| · |DC|. Find all possible values of the perimeter of ABC.

(Patrik Bak)

Solution. Let us denote by E the second intersection of AD with the circumcircle k.
The power of D with respect to k gives |DB| · |DC| = |DA| · |DE|, which together
with the given condition |DA|2 = |DB| · |DC| yields |DA| = |DE|. That is E lie the
image p of the line BC in the homothety with center A and a coefficient 2 (Fig. 1).

Vice versa, to any intersection of a line p with the circle k we reconstruct the
point D on BC, which fulfills |DA|2 = |DB| · |DC|.

If the reconstruction have to be unique, the line p has to touch p in E.

A

B C
D

E

k

p

p

Fig. 2

A

B C
D

E

k
k′

p

SbSc

Fig. 3

Let us denote Sb and Sc in order the centers of AC and AB. The homothety
with the center A and a coefficient 1

2 sends A, B, C, E (lying on the circle k) to A, Sc,
Sb, D which lie on the circle k′ (Fig. 2), while the image of p is the tangent BC of k′

in D. The powers of B and C with respect to k′ give |BD|2 = |BA| · |BSc| = 1
2 |BA|

2

and |CD|2 = |CA| · |CSb| = 1
2 |CA|

2. All together for the perimeter of ABC:

|BC|+ |AB|+ |AC| = |BC|+
√
2(|BD|+ |CD|) = |BC|+

√
2 · |BC| = 1 +

√
2,

which is the only possible value.
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6. There is a figure of prince on a field of a 6 × 6 square chessboard. The prince
can in one move jump either horizontally or vertically. The lengths of the jumps
are alternately either one or two fields, and the jump on the next field is the first
one. Decide, whether one can chose the initial field for the prince, so that the
prince visits in an appropriate sequence of 35 jumps every field of the chessboard.

(Peter Novotný)

Solution. Let us suppose, the appropriate sequence exists and let us enumerate the
fields of the chessboard as follows:

1 2 3 4 1 2
2 3 4 1 2 3
3 4 1 2 3 4
4 1 2 3 4 1
1 2 3 4 1 2
2 3 4 1 2 3

The length one moves go from odd to even number and vice versa. The length
two moves go from even to a different even number or from odd to a different odd
number. If we denote P1, P2, . . . , P36 the numbers of visited fields, then it follows,
that among P2, P3, P4, P5 is each number (from 1 to 4) exactly once (P2 and P3

are different numbers with the same parity, and P4, P5 as well, only the parity is
different). from the same reasons is any of the four numbers among P4k+2, P4k+3,
P4k+4, P4k+5 for arbitrary k ∈ {0, 1, . . . , 7}. Between the numbers P2, P3, . . . , P33 is
thus any of the numbers 1 to 4 exactly eight times.

The number 4 is on the chessboard just eight times, thus no from P1, P34, P35,
P36 can be 4. The numbers P34 and P35 have the same parity and are different (they
are the length two move apart) The number 4 is not among them, therefore both
must be odd. Then P36 has to be even and P1 as well. Thus it has to be number 2.

The initial field (P1) thus has to be one of the coloured fields on the left chess-
board. One can repeat the arguments for the numbering of the right chessboard (just
a rotation of the left one). Since no field has number 2 on both chessboard, we came
to the contradiction. The initial field cannot be chosen.

1 2 3 4 1 2
2 3 4 1 2 3
3 4 1 2 3 4
4 1 2 3 4 1
1 2 3 4 1 2
2 3 4 1 2 3

2 3 4 1 2 3
1 2 3 4 1 2
4 1 2 3 4 1
3 4 1 2 3 4
2 3 4 1 2 3
1 2 3 4 1 2
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