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1. Paul is filling the cells of a rectangular table alternately with crosses and circles

(he starts with a cross). When the table is filled in completely, he determines his
score as O−X where O is the total number of rows and columns containing more
circles than crosses and X is the total number of rows and columns containing
more crosses than circles.

a) Prove that for a 2× n table, the score is always equal to 0.
b) In terms of n, what is the largest possible score Paul can achieve for a

(2n+ 1)× (2n+ 1) table? (Josef Tkadlec)

Solution. a) Consider a table with 2 rows and n columns filled in with n crosses and
n circles. Since the total number of crosses and circles is the same, crosses dominate
in one row if and only if circles dominate in the other one. Hence the rows contribute
0 to the total score.

Next, denote by x, e, and o the number of columns containing two, one, and
zero crosses, respectively. Since the table contains a total of n crosses and n circles,
we have 2x + e = n = e + 2o, hence x = o. As x and o are the number of columns
dominated by crosses and circles, respectively, the columns contribute 0 to the total
score too.

b) Consider a (2n+ 1)× (2n+ 1) table filled with 1
2 ((2n+ 1)2 − 1) = 2n(n+ 1)

circles and 2n(n+1)+1 crosses. Since 2n+1 is odd, each row and column is dominated
by one of the two symbols. Circles can dominate in at most 2n(n+ 1)/(n+ 1) = 2n
rows and thus at least one row is dominated by crosses. Likewise for columns, hence
O 6 2n+ 2n = 4n, X > 1 + 1 = 2 and therefore O −X 6 4n− 2.

Finally, we argue that the score 4n− 2 can be achieved for any n. It suffices to
specify a set S of 2n(n + 1) cells that are to be filled with circles. An example is a
set S that consists of n+ 1 “parallel diagonals” in the top-left 2n× 2n subsquare of
the table and no other cells in the bottom row or right column (see Fig. 1 for n = 3).

2. Let a, b be real numbers such that a+b > 2. Prove that the system of inequalities

(a− 1)x+ b < x2 < ax+ (b− 1)

has infinitely many real solutions x. (Jaromír Šimša)

Solution. We rewrite the system as

F (x) > 0 ∧G(x) < 0,
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Fig. 1

where F (x) = x2−(a−1)x−b and G(x) = x2−ax−b+1. Observe that F (x)−G(x) =
x− 1.

The condition a+ b > 2 implies that

F (1) = G(1) = 2− a− b < 0,

hence x = 1 is not a solution. However, G(1) < 0 implies that the quadratic equation
G(x) = 0 has a root x0 > 1. Then

F (x0) = F (x0)− 0 = F (x0)−G(x0) = x0 − 1 > 0.

From F (1) < 0 and F (x0) > 0 we deduce that there exists a root x1 of F (x) = 0 that
belongs to the open interval (1, x0). Since

F (1) < 0 ∧ F (x1) = 0, and G(1) < 0 ∧G(x0) = 0,

any x ∈ (x1, x0) is a solution to the original system.

3. Two externally tangent unit circles are given in the plane. Consider any rectangle
(or a square) containing both the circles such that each side of the rectangle is
tangent to at least one circle. Find the largest and the smallest possible area of
such a rectangle. (Jaroslav Švrček)

Solution. Denote the circles by k1, k2, their radius by r = 1, and their centers by
O1, O2, respectively. Let ABCD be one such rectangle (or a square) and without loss
of generality assume that the sides AB, BC are tangent to k1 while the sides CD,
DA are tangent to k2. Let P be the intersection of a line through O1 parallel to AB
and a line through O2 parallel to BC. Finally, let φ = 6 PO1O2 (φ ∈ [0, 14π], Fig. 2).

Then

[ABCD] = AB ·BC = (2r + 2r cosφ)(2r + 2r sinφ) = 4(1 + sinφ)(1 + cosφ).

It remains to analyze the expression V (φ) = (1+ sinφ)(1+ cosφ) for φ ∈ [0, 14π].
Multiplying out, this rewrites as

V (φ) = 1 + sinφ+ cosφ+ sinφ cosφ = 1
2 + (sinφ+ cosφ) + 1

2 (sinφ+ cosφ)2.
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and it remains to analyze u = sinφ+ cosφ. Squaring and using the formula sin 2φ =
2 sinφ cosφ, we obtain 1 6 u 6

√
2. Since the function V (φ) = 1

2 + u + 1
2u

2 is
increasing on interval [1,

√
2], we get 2 6 φ 6 3

2 +
√
2 and finally

8 6 [ABCD] 6 6 + 4
√
2.

The first inequality is sharp for φ = 0, that is if both AB and CD are tangent to both
the circles. The second inequality is sharp for φ = 1

4π, that is if ABCD is a square.

4. Find the largest positive integer n such that

b
√
1c+ b

√
2c+ b

√
3c+ · · ·+ b

√
nc

is a prime (bxc denotes the largest integer not exceeding x). (Patrik Bak)

Solution. Consider the infinite sequence {an}∞n=1 defined by an = b
√
nc. This se-

quence is clearly non-decreasing and since

k =
√
k2 <

√
k2 + 1 < · · · <

√
k2 + 2k <

√
k2 + 2k + 1 = k + 1,

it contains every integer k precisely (2k + 1)-times. This allows us to express the
value of the sum sn =

∑n
i=1 ai as follows: Let k = b

√
nc, that is n = k2 + l for some

l ∈ {0, 1, . . . , 2k}. Then

sn =

k−1∑
i=0

i(2i+ 1) + k · (l + 1) = 2 ·
k−1∑
i=1

i2 +

k−1∑
i=1

i+ k(l + 1)

= 2 · (k − 1)(k − 1 + 1)(2(k − 1) + 1)

6
+

(k − 1)(k − 1 + 1)

2
+ k(l + 1)

=
(k − 1)k(4k + 1)

6
+ k(l + 1),
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where we used 1+2+ · · ·+n = 1
2n(n+1) and 12+22+ · · ·+n2 = 1

6n(n+1)(2n+1).
If k > 6 then the fraction 1

6 (k − 1)k(4k + 1) is an integer sharing a prime factor
with k, hence the whole right-hand side is sharing a prime factor with k < sn and sn
is not a prime.

If k 6 6 then n < (6 + 1)2 = 49. Plugging n = 48 into the right-hand side we
get s48 = 203 = 7 · 29. For n = 47 we get s47 = 197, which is a prime. The answer is
n = 47.

5. Let ABCD be a convex quadrilateral such that 6 ABC = 6 ACD and 6 ACB =
6 ADC. Suppose that the circumcenter O of triangle BCD is different from A.
Prove that the angle OAC is right. (Patrik Bak)

Solution. Since 6 ABC + 6 CDA < 180◦, point A lies inside the circumcircle ω of
triangle BCD. Denote by C ′, D′ the second intersection of ω with rays CA, DA,
respectively (Fig. 3). We angle chase:

6 D′C ′C = 6 D′DC = 6 ADC = 6 ACB.

Hence BCC ′D′ is an isosceles trapezoid. Moreover, since 6 C ′AD′ = 6 CAD =
6 BAC, triangles ABC and AD′C ′ are similar by AA and in fact due to BC = C ′D′

they are congruent. Point A is thus the midpoint of the chord CC ′ and 6 OAC = 90◦

follows.

A

B

C

C ′

D

D′

O

ω

Fig. 3

Another solution. Let’s frame the figure with respect to triangle ABD. Then AC
is the A-angle bisector. The Inscribed angle theorem states that the (reflex) angle
BOD is twice the (convex) angle BCD, hence for the size of the convex angle BOD
we get

6 BOD = 360◦ − 2 · 6 DCB = 360◦ − 6 ADC − 6 BCD − 6 ABC = 6 BAD.
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Therefore O lies on the arc BAD of the circumcircle of triangle ABD. Since OB =
OD, point O is the midpoint of that arc and thus it lies on the external A-angle
bisector which is perpendicular to the A-angle bisector.

A

B

C
D

O

Fig. 4

6. Find the largest possible size of a set M of integers with the following property:
Among any three distinct numbers from M, there exist two numbers whose sum
is a power of 2 with non-negative integer exponent. (Ján Mazák)

Solution. The set {−1, 3, 5,−2, 6, 10} attests that M can have 6 elements: The sum
of any two numbers from the triplet (−1, 3, 5) is a power of two and the same is true
for triplet (−2, 6, 10). For the sake of contradiction, assume that some set M has more
than 6 elements.

Clearly, M can’t contain three (or more) non-positive numbers. Hence it contains
at least five positive numbers. Denote by x the largest positive number in M and by
a, b, c, d some four other positive numbers in M. Consider pairs x+ a, x+ b, x+ c,
x+d. They are all larger than x and less than 2x. The open interval (x, 2x) contains
at most one power of two, hence at least three of the four sums are not a power of
two. Without loss of generality, assume those are x + a, x + b, x + c. Considering
the triplets (a, b, x), (a, c, x), (b, c, x) we infer that all a + b, a + c, b + c are powers
of two. However, this is impossible. Without loss of generality, let a = max{a, b, c}.
Then a+ b and a+ c both lie in (a, 2a), hence at least one of them is not a power of
two, a contradiction.
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First Round of the 67th Czech and Slovak
Mathematical Olympiad
(December 12th, 2017)

MO
1. Find all real numbers p such that the system

x2 + (p− 1)x+ p 6 0

x2 − (p− 1)x+ p 6 0

of inequalities has at least one solution x ∈ R. (Jaromír Šimša)

Solution. If p 6 0 then x = 0 is clearly a solution. If p > 0 then summing up we get
2x2 + 2p 6 0 which doesn’t hold for any real x.

Answer. The answer is p ∈ (−∞, 0].

Another solution. The graphs of functions f(x) = x2+ux+v and g(x) = x2−ux+v
are symmetric about the y axis, hence the solutions to the inequalities f(x) 6 0,
g(x) 6 0 are two (possibly degenerate) intervals symmetric about 0. The intersection
of these intervals is nonempty if and only if v = f(0) = g(0) 6 0. In our case, this
happens if and only if p 6 0.

2. Let ABC be a triangle and Sb, Sc the midpoints of the sides AC, AB, respec-
tively. Prove that if AB < AC then 6 BScC < 6 BSbC. (Patrik Bak)

Solution. It suffices to prove that if AB < AC then Sb lies inside the circumcircle k
of triangle BScC.

The midline SbSc is parallel to BC (Fig. 1). Let line SbSc intersect k for the
second time at P . We will show that Sb lies on the segment ScP (as opposed to
lying on the ray opposite to PSc). To that end, it suffices to prove 6 BCA < 6 BCP .
By symmetry about the perpendicular bisector of BC we have 6 BCP = 6 CBA, so
we need to prove 6 BCA < 6 CBA which is in fact clearly equivalent to the given
AB < AC.

A

B C

Sc Sb P

Sa

Fig. 1

A

B C

Sc Sb

Q

k

Fig. 2

6



Another solution. By power of A with respect to k, there exists a point Q on the
ray AC such that AQ ·AC = AB ·ASc = 1

2AB
2. Then (Fig. 2)

AQ =
AB2

2 ·AC
<

AC2

2 ·AC
=

1

2
AC = ASb,

henceQ lies on segment ASb. As before we conclude that Sb lies inside the circumcircle
of triangle BScC.

3. Paul is filling the cells of a rectangular table alternately with crosses and circles
(he starts with a cross). When the table is filled in completely, he determines
his score as X + O where X is the number of rows containing more crosses
than than circles and O is the number of columns containing more circles than
crosses. In terms of n, what is the largest possible score Paul can achieve for a
(2n+ 1)× (2n+ 1) table? (Josef Tkadlec)

Solution. In total there are 2n(n + 1) + 1 < (2n + 1)(n + 1) crosses and 2n(n + 1)
circles. Hence the crosses can dominate in at most 2n rows and, similarly, circles can
dominate in at most 2n columns for the total score 2n+ 2n = 4n.

Such a score can be achieved if, for example, Paul draws crosses in the left n+1
columns of the first n rows, the right n+1 columns of the last n rows and the middle
cell of the middle row. That is precisely 2n(n + 1) + 1 crosses and we easily check
that crosses dominate in all rows except for the middle one while circles dominate in
all columns except for the middle one.

Fig. 3
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Second Round of the 67th Czech and Slovak
Mathematical Olympiad
(January 16th, 2018)

MO
1. Paul is filling the cells of a rectangular table alternately with crosses and circles

(he starts with a cross). When the table is filled in completely, he determines
his score as X − O where X is the sum of squares of the numbers of crosses in
all the rows and columns, and O is the sum of squares of the numbers of circles
in all the rows and columns. Find all possible values of the score for a 67 × 67
table. (Josef Tkadlec)

Solution. Let n = 67 and denote by k = 1
2 (n

2+1) the total number of crosses in the
table. A row containing a crosses and n−a circles contributes a2−(n−a)2 = 2n·a−n2
to the total score and thus all the n rows combined contribute

2n · k − n · n2 = 2n · n
2 + 1

2
− n3 = n

to the total score. Likewise, columns contribute n. Hence the total score is always
equal to 2n = 134.

Another solution. Consider an n×n table filled with arbitrarily many crosses and
circles. We show that replacing any circle by a cross increases the score by 4n. Since
the score for a table filled with all circles equals −2n3 and Paul’s table contains
1
2 (n

2 + 1) crosses, the final score will always be equal to −2n3 + 4n · 12 (n
2 + 1) = 2n.

Consider any cell containing a circle and denote by r and c the number of crosses
in its row and column, respectively. The contribution of this row and column changes
from

A = r2 − (n− r)2 + s2 − (n− s)2 = 2n(r + s)− 2n2

to

B = (r + 1)2 − (n− r − 1)2 + (s+ 1)2 − (n− s− 1)2 = 2n (r + 1 + s+ 1)− 2n2

and the contribution of other rows and columns doesn’t change. Since B − A = 4n,
we are done.

2. Let k be a semicircle with diameter PQ. Consider a chord BC of fixed length d
whose endpoints are distinct from P , Q. A ray of light emanating from B reaches
point C after reflecting from PQ at such a point A that 6 PAB = 6 QAC. Prove
that 6 BAC doesn’t depend on the position of the chord BC on k.

(Šárka Gergelitsová)
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Solution. Reflect k and C about PQ to get l and C ′, respectively (Fig. 1). Then C ′

lies on l and since 6 QAC ′ = 6 QAC = 6 PAB it also lies on BA. Triangle C ′CA is
isosceles, hence

6 BAC = 6 AC ′C + 6 ACC ′ = 2 · 6 BC ′C

The chord BC of circle k ∪ l has a fixed length, hence the corresponding inscribed
angle BC ′C has fixed size and we may conclude.

A

B

C

C ′

P Q

k

l

Fig. 1

A

B

C

P QO

S

o

ks

Fig. 2

Another solution. Let O be the midpoint of PQ. We will show that O lies on the
circumcircle of triangle ABC (Fig. 2). This will imply that 6 BAC = 6 BOC which is
clearly fixed.

Observe that O lies on the perpendicular bisector of BC. Moreover, if O 6= A
then AO is the external A-angle bisector with respect to triangle ABC. Therefore O
is the midpoint of arc BAC.

3. Let a 6= b be positive real numbers. Consider the equation

bax+ bc = bbx+ ac

where byc denotes the largest integer not exceeding y. Prove that the set of real
solutions x to this equation contains an interval of length at least

1

max{a, b}
.

(Patrik Bak)

Solution. Consider linear functions f(x) = ax + b, g(x) = bx + a. Since a, b are
distinct and positive, their graphs are two distinct lines with positive slope. As
f(1) = g(1) = a+ b, point P = [1, a+ b] is the intersection of these lines (Fig. 3).

Without loss of generality, assume b > a (i.e. the line determined by g is the
“steeper” one). Then f(x) > g(x) for x < 1, whereas f(x) < g(x) for x > 1: indeed,

f(x)− g(x) = (ax+ b)− (bx+ a) = (b− a)(1− x).
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Let t = ba+ bc and consider x1 6 1 < x2 such that g(x1) = t and g(x2) = t+ 1 (that
is, x1 = t−a

b and x2 = t+1−a
b ). We claim that the interval [x1, x2) has all the desired

properties.
First, for any x ∈ [x1, x2) we have

t = g(x1) 6 min{f(x), g(x)} 6 max{f(x), g(x)} < g(x2) = t+ 1,

and thus x is a solution to the equation.
Second,

1 = (t+ 1)− t = bx2 + a− (bx1 + a) = b(x2 − x1),

and thus x2 − x1 = 1/b = 1/max{a, b} and the interval has the desired length.

4. Do there exist positive integers n, k such that

n

11k − n

is a square of an integer? (Ján Mazák)

Solution. Such numbers don’t exist. For the sake of contradiction, assume that there
exist positive integers n, k, a such that

n

11k − n
= a2

which rewrites as
n(a2 + 1) = a2 · 11k.

From GCD(a2, a2+1) = 1 we deduce a2+1 | 11k and hence a2+1 = 11t for 1 6 t 6 k.
In particular, a2 ≡ 10 (mod 11). However, this is impossible as the squares of integers
give remainders 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, . . . upon division by 11.
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Final Round of the 67th Czech and Slovak
Mathematical Olympiad
(March 18–21, 2018)

MO
1. In a certain club, some pairs of members are friends. Given k > 3, we say that

a club is k-good if every group of k members can be seated around a round table
such that every two neighbors are friends. Prove that if a club is 6-good then it
is 7-good. (Josef Tkadlec)

Solution. Consider a 6-good club and denote some seven of its members by A, . . . , G.
It suffices to show that A, . . . , G can be seated around a table as required. Consider
only friendships among A, . . . , G. First, we show that every member has at least three
friends.

Without loss of generality consider G. By assumption, B, . . . , G can be seated
as required, hence G has at least two friends. Without loss of generality, F is one of
them. By assumption, A, . . . , E,G (omitting F ) can be seated as required, hence G
has at least two more friends apart from F for a total of at least three friends.

Since every member has at least three friends, there exists a member with at least
four friends (otherwise the number of friendly pairs equals 1

2 · 7 · 3, which is clearly
impossible). Without loss of generality, assume G has at least four friends.

By assumption, A, . . . , F can be seated as required. In such a seating, some two
of the four friends of G are neighbors and we can seat G in between them.

Remark. The statement “If a club is k-good then it is (k+1)-good” holds precisely
for k ∈ {3, 4, 5, 6, 7, 8, 10, 11, 13, 16}. The counterexamples are called hypohamiltonian
graphs. For k = 9, one such example is the Petersen graph (Fig. 1).

Fig. 1

2. Let x, y, z be real numbers such that

1

|x2 + 2yz|
,

1

|y2 + 2zx|
,

1

|z2 + 2xy|

are side-lengths of a (non-degenerate) triangle. Find all possible values of xy +
yz + zx. (Michal Rolínek)
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Solution. If x = y = z = t > 0 then the three fractions are sides of an equilateral
triangle and xy + yz + zx = 3t2, hence xy + yz + zx can attain all positive values.
Similarly, for x = y = t > 0 and z = −2t the three fractions are 1

3 t
−2, 1

3 t
−2, 1

6 t
−2

which are positive numbers that are side-lengths of an isosceles triangle ( 1
6 <

1
3 + 1

3 ).
Since xy + yz + zx = −3t2, any negative value can be attained too.

Next we show that xy + yz + zx can’t be 0. Assume otherwise. Numbers x, y,
z are mutually distinct: if, say, x and y were equal then the denominator of the first
fractions would be equal to |x2 + 2yz| = |xy + (yz + xz)| = 0 which is impossible.

Let’s look at the fractions without absolute values. Subtracting xy+yz+zx = 0
from each denominator we get

1

x2 + 2yz
+

1

y2 + 2zx
+

1

z2 + 2xy
=

=
1

(x− y)(x− z)
+

1

(y − z)(y − x)
+

1

(z − x)(z − y)
=

=
(z − y) + (x− z) + (y − x)

(x− y)(y − z)(z − x)
= 0.

This implies that among the original fractions (with absolute values), one of them is
a sum of the other two. Hence the fractions don’t fulfil triangle inequality and we
reached the desired contradiction.

Answer. Possible values are all real numbers except for 0.

3. Let ABC be a triangle. The A-angle bisector intersects BC at D. Let E, F be the
circumcenters of triangles ABD, ACD, respectively. Given that the circumcenter
of triangle AEF lies on BC, find all possible values of 6 BAC. (Patrik Bak)

Solution. Let O be the circumcenter of triangle AEF and denote α = 6 BAC. Since
6 BAD and 6 CAD are acute (Fig. 2), points E, F lie in the half-plane BCA and the
Inscribed angle theorem yields

6 BED = 2 · 6 BAD = α = 2 · 6 DAC = 6 DFC.

A

B C
D O

E

F

Fig. 2

The isosceles triangles BED and DFC are thus similar and we easily compute
that 6 EDF = α and that BC is the external D-angle bisector in triangle DEF .
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Point O lies on BC and on the perpendicular bisector of EF . Framed with respect
to triangle DEF , it lies on the external D-angle bisector and on the perpendicular
bisector of the opposite side EF . Thus it is the midpoint of arc EDF and 6 EOF =
6 EDF = α.

Quadrilateral AEDF is a kite, hence 6 EAF = α. Moreover, line EF separates
points A and O, thus the Inscribed angle theorem implies that the size of the reflex
angle EOF is twice the size of the convex angle EAF . This yields 360◦ − α = 2 · α
and α = 120◦.

Answer. The only possible value is 6 BAC = 120◦.

4. Consider positive integers a, b, c that are side-lengths of a non-degenerate triangle
and such that GCD(a, b, c) = 1 and the fractions

a2 + b2 − c2

a+ b− c
,

b2 + c2 − a2

b+ c− a
,

c2 + a2 − b2

c+ a− b

are all integers. Prove that the product of the denominators of the three fractions
is either a square or twice a square of an integer. (Jaromír Šimša)

Solution. Let z = a+b−c, x = b+c−a, y = c+a−b be the (positive) denominators.
Then a = (y + z)/2, b = (x+ z)/2, c = (x+ y)/2 and

a2 + b2 − c2 = 1
4 ((y + z)2 + (x+ z)2 − (x+ y)2) = 1

2 (z(z + x+ y)− xy),

hence z | xy and likewise y | xz and x | yz.
For a prime p, let ip be the largest exponent such that pip | xyz. It suffices to

show that for all odd primes p the corresponding ip is even. If i2 is also even then
xyz is a square. Otherwise, it is twice a square.

Fix odd prime p and consider the largest exponents α, β, γ such that pα | x,
pβ | y, pγ | z. Without loss of generality, assume min{α, β, γ} = γ. If γ > 0 then
p divides each of x, y, z and thus it divides each of a, b, c (p is odd), contradicting
GCD(a, b, c) = 1. Therefore γ = 0.

From x | yz we infer α 6 β. Likewise, from y | xz we infer β 6 α. Hence β = α
and ip = α+ β + γ = 2α is an even number as desired.

5. Let ABCD be an isosceles trapezoid with longer base AB. Let I be the incenter
of triangle ABC and J the C-excenter of triangle ACD. Prove that IJ and AB
are parallel. (Patrik Bak)

Solution. Let K be the incenter of triangle ABD. Since IK ‖ AB, it suffices to
show JK ‖ AB. Let 6 ABD = 6 ACD = φ. Then 6 AKD = 90◦ + 1

2φ and 6 DJA =
90◦ − 1

2φ, implying that the quadrilateral AKDJ is cyclic (Fig. 3).
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A B

CD

IJ K

φ

φ

Fig. 3

As AK, DJ are bisectors of alternate interior angles, they are parallel. Together
with the cyclic quadrilateral we obtain 6 AKJ = 6 ADJ = 6 DAK = 6 KAB which
concludes the proof.

6. Find the smallest positive integer n such that for any coloring of numbers 1, 2,
3, . . . , n by three colors there exist two numbers with the same color whose differ-
ence is a square of an integer. (Vojtech Bálint, Michal Rolínek, Josef Tkadlec)

Solution. The answer is n = 29.
First, for the sake of contradiction, assume that numbers 1, 2, . . . , 29 can be

colored by colors A, B, C such that no two numbers with the same color differ by a
square. Let f(i) be the color of number i for i ∈ {1, 2, . . . , 29}.

Since 9, 16, and 25 are squares, numbers 1, 10, 26 are all assigned distinct colors.
The same is true for numbers 1, 17, 26, hence 10 and 17 are assigned the same color.
Likewise we get f(11) = f(18), f(12) = f(19) a f(13) = f(20) (for the last equality
we look at numbers 4, 13, 20, 29).

Without loss of generality, assume f(10) = f(17) = A. As 11 = 10 + 12, we
have f(11) 6= f(10). Without loss of generality, let f(11) = f(18) = B. Now
19 = 18 + 12 = 10 + 32, hence f(12) = f(19) = C. Similarly, 20 = 19 + 12 = 11 + 32

implies f(13) = f(20) = A. We have derived f(13) = A = f(17), a contradiction.
On the other hand, if n 6 28, we may color the numbers as below. It’s easy to

check that no two numbers with the same color differ by a square of an integer.
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1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28

B C A C

A B C B C

A B C B C

A B B CA

A B B CA

A BC A

Fig. 4
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Results of the Final Round

1. Pavel Hudec 7 7 7 6 7 7 41
2. Danil Koževnikov 6 7 7 7 7 6 40
3. Matěj Doležálek 7 7 7 6 7 2 36
4. Martin Raška 7 4 1 6 7 7 32
5. Lenka Kopfová 7 3 1 5 7 7 30
6. Josef Minařík 6 4 1 7 7 1 26
7. Filip Čermák 7 3 1 7 7 0 25
8. Radek Olšák 7 1 1 1 7 7 24
9. Vít Jelínek 7 1 0 7 7 0 22

10. Jonáš Havelka 7 3 0 4 1 7 22
11. Filip Svoboda 5 3 0 6 7 0 21
12. Jana Pallová 0 0 7 0 7 6 20
13. Tomáš Perutka 7 0 1 4 7 0 19
14. Tomáš Sourada 7 0 2 2 7 0 18
15. Dalibor Kramář 7 3 0 0 7 0 17
16. Václav Steinhauser 7 3 0 0 7 0 17
17. Hedvika Ranošová 7 0 1 0 7 1 16
18. Petr Gebauer 7 3 0 6 0 0 16
19. Vít Pískovský 6 3 0 0 7 0 16
20. Matěj Konvalinka 6 0 0 3 7 0 16
21. Adam Janich 6 0 1 0 7 2 16

22.–23. John Richard Ritter 7 0 0 0 7 0 14
Martin Kurečka 4 0 0 4 6 0 14

24.–25. Magdaléna Mišinová 2 0 0 4 7 0 13
Václav Kubíček 7 3 0 1 0 2 13

26. Adam Křivka 3 0 0 2 7 0 12
27.–29. Jiří Vala 1 3 0 0 0 7 11

Jindřich Jelínek 0 0 1 2 7 1 11
Bára Tížková 1 0 1 0 7 2 11

30.–31. Alexandr Jankov 1 0 1 2 6 0 10
Tomáš Křižák 5 0 1 2 0 2 10

32.–35. Matthew Dupraz 2 0 0 0 7 0 9
Karel Chwistek 7 0 0 2 0 0 9
Michal Košek 7 0 0 2 0 0 9
Jiří Nábělek 0 0 1 0 4 4 9

36. Martin Zimen 6 0 1 0 0 0 7
37. Martin Schmied 1 3 0 2 0 0 6
38. Petr Zahradník 2 3 0 0 0 0 5

39.–40. Jiří Löffelmann 1 3 0 0 0 0 4
Vojtěch David 1 1 0 2 0 0 4

41.–42. Jan Hřebec 0 3 0 0 0 0 3
Anna Mlezivová 1 1 0 0 1 0 3

43. Daniela Opočenská 0 1 0 0 1 0 2
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