
1. Find all positive real numbers c such that there are infinitely many pairs of positive integers (n,m) satisfying
the following conditions: n ≥ m+ c

√
m− 1 + 1 and among numbers n, n+ 1, . . . , 2n−m there is no square

of an integer.
(Slovakia)

Solution: We prove that c satisfies the condition in the statement if and only if c ≤ 2.
Let us first consider any c ≤ 2. For any positive integer k, define

n = k2 + 1 and m = (k − 1)2 + 1

Observe that
m+ c

√
m− 1 + 1 ≤ k2 − 2k + 2 + 2(k − 1) + 1 = k2 + 1 = n

and
(n, n+ 1, . . . , 2n−m) = (k2 + 1, k2 + 2, . . . , k2 + 2k).

Therefore, every such pair (n,m) indeed satisfies the property from the problem statement, and there are in-
finitely many such pairs.

Now let us consider any c > 2, and let (n,m) be any pair of positive integers satisfying the property from
the problem statement. Observe that for each positive integer n, the number d

√
ne2 is always between numbers

n and (
√
n+ 1)2 (inclusive), hence there is always a square of an integer in the range

n, n+ 1, . . . , n+ b2
√
nc+ 1.

This implies that 2n−m < n+ b2
√
nc+ 1, so in particular

m ≥ n− 2
√
n.

Combining this with the inequality from the problem statement yields

n ≥ n− 2
√
n+ c

√
n− 2

√
n− 1 + 1. (1)

Observe that since c > 2, we have c
√
n− 2

√
n− 1 > 2

√
n for large enough n. Indeed, equivalently we have

1 − 2√
n
− 1

n > 4
c2 , and the left-hand side tends to 1 as n grows to infinity while the right hand side is strictly

smaller than 1. This implies that (1) may be satisfied only for finitely many positive integers n. Since m ≤ n
for all pairs (n,m) satisfying the conditions from the problem statement, this implies that there are only finitely
many such pairs (n,m).

2. Let ω be the circumcircle of an acute-angled triangle ABC. Point D lies on the arc BC of ω not containing
point A. Point E lies in the interior of the triangle ABC, does not lie on the line AD, and satisfies ∠DBE =
∠ACB and ∠DCE = ∠ABC. Let F be a point on the line AD such that lines EF and BC are parallel, and
let G be a point on ω different from A such that AF = FG. Prove that points D,E, F,G lie on one circle.

(Slovakia)

Solution: Denote α = ∠CAB, β = ∠ABC, and γ = ∠BCA. Let K and L be the second intersections of lines
BE and CE with ω, respectively, different from B and C. Observe that

∠BAK = ∠BAD + ∠DAK = ∠BAD + ∠DBE = ∠BAD + γ = ∠ACD

and symmetrically ∠CAL = ∠ABD. It follows that arcs AD, BK, and CL of ω have equal lengths, so chords
AD, BK, and CL also have equal lengths. In particular, since E = BK ∩CL does not lie on AD, these chords
are not diameters. It follows that if O is the center of ω, then O does not lie on any of the chords AD, BK, CL,
and in particularO 6= E. Moreover,O andE lie on the same side of lineAD. Suppose without loss of generality
that O and E lie in triangle ACD, for the second case is symmetric.
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Observe that

∠BEC = 360◦ − ∠DBE − ∠DCE − ∠BDC = 360◦ − β − γ − (180◦ − α) = 2α = ∠BOC,

which implies that B,O,E,C are concyclic. Further, if we denote P = AD ∩BC, then we have

∠DOE = ∠BOE − ∠BOD = 180◦ − ∠BCE − 2∠BAD

= 180◦ − ∠DCE − ∠BAD = 180◦ − β − ∠BAD = ∠APB = ∠EFD,

which implies that D,F,O,E are also concyclic.
Consider triangles AFO and GFO. We have AF = FG by assumption, also OA = OG since G lies on

ω, hence these two triangles are congruent. In particular ∠FAO = ∠FGO. Triangle AOD is isosceles, hence
∠FAO = ∠FDO. This implies that F,O,G,D are concyclic as well.

Since points F,O,D are pairwise distinct, this implies that all five points D,F,O,E,G lie on the circum-
circle of triangle FOD, so in particular D,E, F,G are concyclic.

3. Let k be a fixed positive integer. A finite sequence of integers x1, x2, . . . , xn is written on a blackboard. Pepa
and Geoff are playing a game that proceeds in rounds as follows.

• In each round, Pepa first partitions the sequence that is currently on the blackboard into two or more
contiguous subsequences (that is, consisting of numbers appearing consecutively). However, if the number
of these subsequences is larger than 2, then the sum of numbers in each of them has to be divisible by k.

• Then Geoff selects one of the subsequences that Pepa has formed and wipes all the other subsequences
from the blackboard.

The game finishes once there is only one number left on the board. Prove that Pepa may choose his moves so
that independently of the moves of Geoff, the game finishes after at most 3k rounds.

(Poland)

Solution: A finite sequence of integers is called a word and any its contiguous subsequence is called a subword.
For a word u, by

∑
u we denote the sum of numbers in u. A prefix of a word is a subword starting at the

beginnning of the word, and a prefix is proper if it is neither empty nor the whole word. Analogously we define
suffixes.

For a word u, letR(u) ⊆ {0, 1 . . . , k−1} be the set of remainders r modulo k for which there exists a proper
prefix v of u with

∑
v ≡ r mod k. In other words, R(u) comprises different remainders modulo k realized by

sums of numbers in proper prefixes of u. Define the rank of u as |R(u)|.
We shall prove the following statement: given a word u on the board, Pepa can always play at most 3 rounds

so that the rank of the remaining word is strictly smaller than the rank of u. Since the rank of the initial word is
at most k and the rank of a word is 0 if and only if it consists of one number, in this way Pepa may force the end
of the game within at most 3k rounds.

Assume then that the word u on the board has length larger than 1, and take any r ∈ R(u). Suppose that the
proper prefixes of u giving remainder r modulo k end at positions 1 ≤ i1 < i2 < . . . < ip < |u|, where p ≥ 1.
Consider the following partition of u into subwords:

u = v0v1v2 . . . vp−1vp,

where v0 is the prefix up to position i1, each vj for j = 1, 2, . . . , p− 1 is the subword between positions ij + 1
and ij+1, and vp is the suffix from position ip + 1 till the end of the word.

We observe that the rank of each of subword vj is strictly smaller than the rank of u. For j = 0 this is
trivial: since i1 is the first position at which a prefix of u has sum congruent to r modulo k, we have that
R(v0) ⊆ R(u) \ {r}. For j > 0, take any proper prefix w of vj , let w′ = v0v1 . . . vj−1w, and let a be the
remainder of

∑
v0v1 . . . vj−1 modulo k. Observe that

∑
w′ ≡ a +

∑
w mod k. Therefore, the remainders

realized by proper prefixes w of vj are exactly the remainders realized by prefixes w′ as above with a subtracted
modulo k. Since between ij and ij+1 there is no position at which a prefix of u has sum congruent to r modulo
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k, we infer that none of prefixes w′ as above has sum congruent to r modulo k. This implies that R(vj) ⊆
{q − a : q ∈ R(u) \ {r}}, so |R(vj)| < |R(u)|.

Note that
∑
vj ≡ 0 mod k for each j = 1, 2, . . . , p− 1 by construction. All these observations lead to the

following three-turn strategy for Pepa:

• Partition u into v0 and v1v2 . . . vp. If Geoff chooses v0, then the rank of the word has already decreased.
Otherwise Geoff chooses v1v2 . . . vp.

• Partition v1v2 . . . vp into v1v2 . . . vp−1 and vp. If Geoff chooses vp, then the rank of the word has already
decreased. Otherwise Geoff chooses v1v2 . . . vp−1.

• Partition v1v2 . . . vp−1 into v1, v2, . . . , vp−1, which are all words with sums of numbers divisible by k.
Regardless of the move of Geoff, the rank of the word chosen by him is strictly smaller than the rank of u.

This concludes the proof.

4. Let ABC be a triangle. Line ` is parallel to BC and it respectively intersects side AB at point D, side AC at
point E, and the circumcircle of the triangle ABC at points F and G, where points F,D,E,G lie in this order
on `. The circumcircles of triangles FEB and DGC intersect at points P and Q. Prove that points A,P,Q are
collinear.

(Slovakia)

Solution: Let ωB , ωC be the circumcircles of triangles FEB and DGC respectively. Since PQ is the radical
axis of ωB and ωC , it is sufficient to prove that the powers of A with respect to ωB and ωC are equal. If we
denote by X the second intersection of ωB and AC, and by Y the second intersection of ωC and AB, then this
is equivalent to

AX ·AE = AY ·AD.

Lines DE and BC are parallel, yielding AB
AD = AC

AE , so the above is equivalent to

AX ·AC = AY ·AB.

This, in turn, is equivalent to B, Y,X,C being concyclic. From angles in ωB and ωC we have

∠BY C = ∠DY C = ∠DGC and ∠BXC = ∠BXE = ∠BFE.

On the other hand, trapezoidBFGC is inscribed in the circumcircle ofABC, so it is isosceles, hence ∠BFE =
∠DGC. We conclude that ∠BY C = ∠BXC, so B, Y,X,C are indeed concyclic and we are done.

5. Each of the 4n2 unit squares of a 2n× 2n board (n ≥ 1) has been colored blue or red. A set of four different
unit squares of the board is called pretty if these squares can be labeled A,B,C,D in such a way that A and
B lie in the same row, C and D lie in the same row, A and C lie in the same column, B and D lie in the same
column, A and D are blue, and B and C are red. Determine the largest possible number of different pretty sets
on such a board.

(Poland)

Solution: Let us index the unit squares of the board by pairs of integers (a, b) with 1 ≤ a, b ≤ 2n. We prove
that the largest possible number of pretty sets is n4. For the upper bound, consider coloring all the unit squares
(a, b) with a, b ≤ n or a, b ≥ n + 1 blue, and all the other unit squares red. It is straightforward to verify that
this coloring yields n4 pretty sets. Thus we are left with proving that no coloring yields more pretty sets.

Call an unordered pair of distinct unit squares {A,B} mixed if A and B are in the same row and A and B
have different colors. Clearly, if a row contains a blue squares and b red squares (a + b = 2n), then it contains
ab ≤ n2 mixed pairs. Therefore, there are at most 2n3 mixed pairs in total.

Let every mixed pair {A,B} charge the unordered pair {i, j} of distinct columns such that A is in column
i and B is in column j. Denote by charge(i, j) the number of times the pair of columns {i, j} is charged.
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Obviously, every pair of columns is charged at most 2n times, i.e., charge(i, j) ≤ 2n. Moreover, since there
are at most 2n3 mixed pairs in total, we have

∑
{i,j} charge(i, j) ≤ 2n3 where the summation is over pairs of

distinct columns {i, j}.
Observe that if a pair of distinct columns {i, j} is charged k = charge(i, j) times, then there are at most

k2

4 pretty sets with squares contained in these columns. This is because for some a, b with a + b = k there are
a red-blue and b blue-red mixed pairs within these columns, yielding ab ≤ k2

4 pretty sets. Therefore, the total
number of pretty sets is at most

1

4

∑
{i,j}

charge(i, j)2 ≤ n

2
·
∑
{i,j}

charge(i, j) ≤ n4,

where again the summation is over unordered pairs of distinct columns. This concludes the proof.

6. Find all functions f : (0,+∞)→ R satisfying

f(x)− f(x+ y) = f

(
x

y

)
f(x+ y) for all x, y > 0.

(Austria)

Solution: Suppose f(t) = 0 for some t > 0. For 0 < x < t we choose y = t− x > 0 and find f(x) = 0. From
setting x = y = 1 we conclude that f(1) 6= −1. Hence by setting x = y we get f(x)− f(2x) = f(1)f(2x) for
x > 0. Inductively we find

f(2nx) = f(x)(1 + f(1))−n. (2)

Hence for an arbitrary x > 0 we choose n ∈ N such that x
2n ≤ t and we conclude from (2) that f(x) = 0.

Now suppose f(t) 6= 0 for all t > 0. We define g(x) := f(x)−1, x > 0, and rewrite the given equation as

g(x+ y)− g(x) = g(x)

g
(
x
y

) for all x, y > 0. (3)

By setting y = 1 we obtain g(x+ 1) = g(x) + 1 for all x > 0. It follows that g(n) = n− 1 + g(1) holds for all
n ∈ N. Setting x = y = 2 in (3) we now find g(1) = 1. Setting x = 1 we obtain g(y)g

(
1
y

)
= 1 for all y > 0.

We can now rewrite (3) as

g(x+ y) = g(x) + g(x)g
(
y
x

)
= g(x)

(
1 + g

(
y
x

))
= g(x)g

(
x+y
x

)
. (4)

From (4) we directly see that g(a)g(b) = g(ab) for all a > 0 and b > 1. Using g(y)g
(
1
y

)
= 1, we can rewrite

(4) as
g
(

x
x+y

)
g(x+ y) = g(x),

which together with the previous line shows that g(a)g(b) = g(ab) holds indeed for all a, b > 0. In particular
we see that g(a) = g(

√
a)2 > 0, so g is a positive function. Also, from the first equation in (4) we now infer the

functional equation
g(x+ y) = g(x) + g(y) for all x, y ∈ (0,∞).

It is well known that this implies g(x) = xg(1) = x for x ∈ Q>0. Since g is positive, by (3) we deduce that
g(x+ y) > g(x), so g is strictly increasing. Hence g(x) = x for all x > 0.

Since f(x) = 0 and f(x) = 1
x obviously satisfy the given equation, we have found all solutions.
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