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1. Find all triples a, b, c of real numbers with the following property: each of the

equations

x3 + (a + 1)x2 + (b + 3)x + (c + 2) = 0, (1)

x3 + (a + 2)x2 + (b + 1)x + (c + 3) = 0, (2)

x3 + (a + 3)x2 + (b + 2)x + (c + 1) = 0 (3)

has three distinct real roots, but altogether these roots form just five distinct num-
bers.

Solution. Assume that the numbers a, b, c have the required property. Observe first
of all that any two of the given equations must have a common root, otherwise they
would have altogether at least six distinct roots.
The common roots of the given three cubic equations are roots of the quadratic

equations obtained by subtracting them. These three quadratic equations turn out to
be independent of the parameters a, b, c:

x2 − 2x + 1 = (x − 1)2 = 0, (2–1)

2x2 − x − 1 = (2x + 1)(x − 1) = 0, (3–1)

x2 + x − 2 = (x − 1)(x + 2) = 0. (3–2)

We see that the equations (1) and (2) have only one common root x = 1, thus together
they have exactly five distinct roots. Hence each of the roots of the equation (3) must
also be a root of at least one of the equations (1) or (2). From the subtracted equations
it follows that number x = 1 is also a root of the equation (3).
We claim that the other two roots of the equation (3) cannot be at the same time

also roots of (1) or (2). Otherwise one of the equations (1), (2) would have the same
three roots as the equation (3), and thus would have the same coefficient not only at
the cubic term. This is however not the case, since for any value of the parameter c
the constant terms c + 1, c + 2, c + 3 of the three equations are always mutually
distinct.
The equation (3) has thus, in addition to x = 1, one more common root with

the equation (1) and one common root with the equation (2); from (3–1) and (3–2)
we see that these common roots are x = −1

2 and x = −2. The left hand side of the
equation (3) thus decomposes as

(x − 1)(x + 2)
(

x +
1

2

)

= x3 +
3

2
x2 − 3

2
x − 1.
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Comparing this with the coefficients of (3) we already obtain a = −3
2 , b = −7

2 , c = −2.

From our argument it follows that for these values of a, b, c the equation (3) has
the roots 1, −1

2 and −2, that the numbers 1, −1
2 are roots of the equation (1) and that

the numbers 1, −2 are roots of the equation (2). What remains to be checked is that
the third roots of the equations (1) and (2) are another two (distinct) numbers. These
third roots can be conveniently found using Vièta’s relations. Because the product of
the three roots of (1) is the number opposite to the constant term c+2 = 0, the third
root of (1) must be the number 0. Similarly the product of the roots of (2) equals −1,
thus the third root of the equation (2) is the number x = 1

2
.

Conclusion. The problem has the unique solution a = −3
2 , b = −7

2 , c = −2.

2. In the plane a segment AV and an acute angle of magnitude α are given. Find
the locus of the circumcenters of all triangles ABC with interior angle α at the
vertex A and with orthocenter V .

Solution. We begin by proving a useful general assertion about the orthocenter V
of any acute triangle ABC. Denote by V ′ the intersection of the line containing the
altitude CC0 with the circumcircle of the triangle ABC (Fig. 1). The right triangles

A B

C

A0

C0

V

V ′

O

k

Fig. 1

C0V A and A0V C are similar (they have also the same angle at the vertex V ), therefore
6 BAA0 = 6 BCC0. The angles BCC0 and V ′AB are congruent as they subtend the
same arc V ′B, hence the points V and V ′ are symmetric with respect to the line AB.

Denoting the angles in the triangle ABC in the standard way, we have 6 ACV ′ =
6 ACC0 = 90◦−α, so for the length of the segment AV , in view of the above symmetry,
we get

AV = AV ′ = 2r sin(90◦ − α) = 2r cos α, (1)

where r is the radius of the circumcircle k of the triangle ABC (and AV ′C). The same
formula (1) also holds for a triangle ABC with acute interior angle α at the vertex A
even if one of the other interior angles is right or obtuse (Fig. 2): the argument still
works, word by word.
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Fig. 2

Coming back to the solution of our problem, the formula (1) leads to the con-
clusion that the circumcircles of all the triangles ABC in question have the same
radius

r =
AV

2 cosα
, (2)

so their centers O have a fixed distance r from the point A. We must, however,
determine what part of the circle l(A, r) will the centers O fill; certainly this will be
a set symmetric with respect to the line AV , since the symmetry with respect to AV
transforms any admissible triangle into another admissible triangle. With this aim we
express the magnitude of the angle VAO in terms of the interior angles β = 6 ABC
and γ = 6 ACB. We may also assume that β > γ (otherwise we would interchange
the notations B, C for the vertices from the very beginning).
Assume first that β < 90◦, so the triangle ABC is acute and we can again use

Fig. 1. From the isosceles triangle ABO with interior angle 2γ at the main vertex O
we see that 6 BAO = 90◦ − γ; on the other hand, from the right triangle BAA0 we
obtain 6 BAV = 90◦−β. Since both points O, V lie in the half-plane ABC, we obtain
for the angle VAO the expression

6 VAO = 6 BAO − 6 BAV = (90◦ − γ) − (90◦ − β) = β − γ

(recall that β > γ).
In the case of β > 90◦ as in Fig. 2 we similarly find that 6 BAO = 90◦ − γ and

6 BAV = β − 90◦, whence

6 VAO = 6 BAO + 6 BAV = (90◦ − γ) + (β − 90◦) = β − γ.

We thus see that 6 VAO = β − γ no matter whether the triangle ABC is acute, right
or obtuse.
Now it is already easy to finish the solution: from the formula obtained we have

the estimate
6 VAO = β − γ < β + γ = 180◦ − α,

so the point O lies on the arc of the circle l(A, r) determined by the inequality

6 VAO < 180◦ − α.
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Conversely, for any angle ǫ, 0◦ 6 ǫ < 180◦ − α, we easily compute what must be the
magnitudes of the interior angles β and γ in order that 6 VAO = ǫ:

β =
180◦ − α + ǫ

2
, γ =

180◦ − α − ǫ

2
.

Consequently, if we inscribe into an arbitrary circle of radius r given by (2) an auxiliary
triangle A′B′C′ with the given angle α at the vertex A′ and the computed angles β,
γ at the vertices B′ and C′, respectively, then for its orthocenter V ′ and circumcenter
O′ there will hold the equalities A′V ′ = AV and 6 V ′A′O′ = ǫ. Applying a congruence
which maps the segment A′V ′ into the segment AV , the triangle A′B′C′ gets mapped
into an admissible triangle ABC, whose circumcenter O lies on the circle l and satisfies
6 V AO = ǫ.

Conclusion. The sought locus of circumcenters O is the arc of the circle with
center A and radius r = 1

2AV/ cosα determined by the inequality 6 VAO < 180◦ − α
(the endpoints of the arc do not belong to the locus, cf. Fig. 3).

A B

C

V

O

Fig. 3

3. A set M consists of 2n mutually distinct positive real numbers, where n > 2.
Consider n rectangles, whose dimensions are numbers from M , with each element
of M being used exactly once. Determine the dimensions of these rectangles if
the sum of their areas is known to be
a) the greatest possible; b) the least possible.

Solution. Consider first the simplest situation when n = 2. The given set M thus
consists of four positive numbers, which we denote in the order of their magnitude by

a1 < a2 < a3 < a4.

There are only three possibilities how to construct the pair of rectangles in the manner
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requested; namely, they may have dimensions

a1 × a2 and a3 × a4,

a1 × a3 and a2 × a4,

a1 × a4 and a2 × a3.

We claim that the sums of areas of these rectangles are, in this order, decreasing;
that is, that

a1a2 + a3a4 > a1a3 + a2a4 > a1a4 + a2a3. (1)

This is easily checked directly, and also follows from the general fact that

a < b, c < d =⇒ ac + bd > ad + bc, (2)

which holds for any four-tuple of real numbers a, b, c, d owing to the equality

(ac + bd) − (ad + bc) = (b − a)(d − c).

Indeed, the inequality on the left in (1) follows from (2) upon choosing

a = a1, b = a4, c = a2, d = a3 (recall that a1 < a4 and a2 < a3),

and the inequality on the right upon choosing

a = a1, b = a2, c = a3, d = a4 (recall that a1 < a2 and a3 < a4).

This solves the problem in the case of n = 2, and suggests the following conjecture
for general n > 2:

If a1 < a2 < · · · < a2n are the elements of the given set M , then the greatest
sum of areas occurs exactly for the n-tuple of rectangles with dimensions given by
a1 × a2, a3 × a4, . . . , a2n−1 × a2n; while the least sum of areas occurs exactly for the
n-tuple of rectangles with areas a1 × a2n, a2 × a2n−1, . . . , an × an+1.
To prove the first assertion, assume that the maximum sum of areas occurs for

some n-tuple in which the numbers a1, a2 are not the dimensions of the same rectangle.
The corresponding n-tuple thus contains rectangles a1×ai and a2×aj , where i, j > 2.
Replacing these by the rectangles a1 ×a2 and ai ×aj , we obtain an n-tuple which has
bigger sum of areas, since

a1a2 + aiaj > a1ai + a2aj,

in view of (2) and the fact that a1 < aj and a2 < ai. It follows that the greatest sum of
areas can only occur if the n-tuple in question contains the rectangle a1 ×a2. We can
thus put this rectangle aside and concentrate on the remaining n−1 rectangles, which
is tantamount to solving the greatest-area problem for the reduced set M ′ of 2n − 2
elements a3 < a4 < · · · < a2n. Repeating the above argument we see that the maximal
area tuple needs to contain the rectangle a3×a4, and we make another reduction, and
so on (formally, we may use the mathematical induction). This proves the assertion
concerning the n-tuple with greatest possible sum of areas.
The assertion about least possible area is handled in exactly the same way. If a1,

a2n are not the dimensions of the same rectangle, the n-tuple contains the rectangles
a1 × ai and aj × a2n where 1 < i, j < 2n; replacing these by the rectangles a1 × a2n

and ai × aj, we obtain a tuple with smaller sum of areas, since

a1ai + aja2n > a1a2n + aiaj

in view of (2) and the inequalities a1 < aj and ai < a2n. The least possible sum
of areas can thus occur only if the n-tuple contains the rectangle a1 × a2n. Put this
rectangle aside and consider the minimum sum of areas problem for the reduced set
M ′ of 2n − 2 elements a2 < a3 < · · · < a2n−1, etc. This concludes the proof.
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4. Find the number of finite increasing sequences of natural numbers a1, a2, . . . , ak,
of all possible lengths k, for which a1 = 1, ai | ai+1 for i = 1, 2, . . . , k − 1, and
ak = 969 969.

Solution. Clearly all members of the sequence must be divisors of its last member,
969 969. Using the decomposition into prime factors,

969 969 = 3 · 7 · 11 · 13 · 17 · 19. (1)

we thus see that the following holds:
Each member ai of the sequence a1, a2, . . . , ak is the product of some (for i =

1—of none, for i = k—of all) of the six distinct primes in the decomposition (1);
furthermore, (for i < k) the member ai+1 has, in addition to all the prime factors
of ai, also at least one new prime factor (since the sequence is to be increasing!).
Conversely, each such finite sequence satisfies the conditions of the problem.
From here it follows how one can describe each such sequence in an “economical

manner”: it is enough to list the new factors as they are turning up, that is, to give
the sequence of ratios

a2

a1
,

a3

a2
,

a4

a3
, . . . ,

ak−1

ak−2
,

ak

ak−1
, (2)

into whose prime factorizations the six primes from (1) are distributed (at least one
prime in each). The desired number of sequences is thus equal to the number of
ways the six given primes can be distributed into one or several numbered nonempty
groups (each corresponding to the prime factors of the ratios in (2), hence the order
of the primes in a group is irrelevant). The word “numbered” means that the order
of groups, on the other hand, does matter. For instance, for the distribution into two
groups {3, 11, 19} and {7, 13, 17} we get, depending on the order in which the groups
are considered, two possible sequence (1, u, uv) and (1, v, uv), where u = 3 · 11 · 19
and v = 7 · 13 · 17.
We have thus arrived at the combinatorial problem of determining the value of

P (6), where P (n) denotes the number of ways an n-element set X can be partitioned
into any number of “numbered” nonempty subsets X1, X2, X3, . . . . To compute
P (6) we use the recurrence relation

P (n) =

(
n

1

)

P (n − 1) +

(
n

2

)

P (n − 2) + · · · +
(

n

n − 1

)

P (1) + 1, (3)

valid for any n > 2, which we now proceed to prove.
We divide the desired partitions of the n-element set X into n groups according

to the number j of elements in the first subset X1 (1 6 j 6 n). This first subset X1,

having j elements, can be chosen in exactly

(
n

j

)

ways, and then the remaining set

X ′ = X \ X1 can be partitioned into nonempty numbered subsets X2, X3, X4, . . .
in P (n − j) ways. (This holds even for j = n, when we set P (0) = 1, since there is
nothing already left to partition.) The number of desired partitions of X whose first

set X1 consists of exactly j elements is thus equal to

(
n

j

)

P (n−j), and the formula (3)

6



already follows (the last term 1 on the right-hand side of (3) corresponds to the case
of j = n).
From the obvious value P (1) = 1 we thus compute by (3), in turn, P (2) = 3,

P (3) = 13, P (4) = 75, P (5) = 541 and P (6) = 4 683.

Conclusion. There exist exactly 4 683 such sequences.

5. A circle k is given, a point O which does not lie on k, and a line p which does
not intersect k. Consider an arbitrary circle l, which is externally tangent to k
and is also tangent to p. Denote the corresponding common points by A and B,
respectively. If O, A and B are not collinear, we construct the circumcircle m
of the triangle OAB. Prove that all such circles m either have a common point
different from O, or are tangent to the same line.

Solution. One of the possible circles l is shown on Fig. 4. The common point A of
the circles k, l is their center of homothety, under which the tangent p of the circle l
gets transformed into the parallel tangent p′ of the circle k. The common point M
of p′ and k lies on the axis q of the circle k perpendicular to the line p, and from
the two common points M , N of the line q with the circle k the point M is the one
farther from p, since the segment connecting the homothetic tangent points M and
N intersects the circle k at the point A (the center of the homothety).

M N

S

O

P

R

A

B

p′ p

q

k

l

m

Fig. 4

Consequently, the point M does not depend on the choice of the circle l. The
points A ∈ k and B ∈ p of course depend on this choice, but we will show that their
mutual position on the half-line emanating from M is restricted by the condition

MA · MB = MN · MP, (1)

where P is the intersection of the perpendicular lines p and q. This follows easily from
the similarity

MA : MN = MP : MB

of the right triangles AMN , PMB. The relation (1) can also be derived using the
power of the pointM with respect to the circle above the diameter NB (which passes
through the points P and A by the Thaletian theorem).
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Now consider the point O. On Fig. 4 the circle l is chosen so that the corre-
sponding line AB does not pass through the point O, so that there exists a circle
circumscribed to the triangle OAB. According to the formulation of the problem
O /∈ k, hence O 6= M , so these two points determine a half-line MO, which in addi-
tion to O has one more common point—say, R—with the circle m. (If MO happens
to be a tangent of m, we set R = O).1 Expressing the power of the point M with
respect to the circle m in two different ways, we find

MA · MB = MO · MR,

whence upon comparing with (1) we see that the segment MR has length equal to

MR =
MN · MP

MO
,

which is clearly independent of the choice of the circle l. Since the point R at the
same time lies on the (fixed) half-line MO, in the case of MR 6= MO the point R is
common to all the circles m (R 6= O), while in the case of MR = MO the line MO is
their common tangent. This completes the proof.

6. Show that for any natural number n there exists an integer a, 1 < a < 5n, such
that 5n | a3 − a + 1.

Solution. For n = 1, let us list the values of r3 − r + 1 for all possible remainders r
upon division by 5, i.e. for r ∈ {0, 1, 2, 3, 4}:

r 0 1 2 3 4
r3 − r + 1 1 1 7 25 61

We need not compute the values of a3 − a + 1 for other integers a; for, if r denotes
the remainder of a upon division by 5, i.e. a = 5q + r for suitable integer q, then the
numbers a3 − a + 1 and r3 − r + 1 give the same remainder upon division by 5, since

(a3 − a + 1) − (r3 − r + 1) = (a3 − r3) − (a − r) = (a − r)(a2 + ar + r2 − 1)

is divisible by a− r = 5q, hence is a multiple of 5.2 From the table above we see that
for an integer a, we have 5 | a3 − a + 1, if and only if a = 5q + 3.
We proceed to solve the problem by showing inductively that for each n, it is

possible to choose an integer an in the interval (1, 5n) satisfying the condition 5n |
a3

n − an + 1. For n = 1, this holds true for the unique choice (in the interval (1, 5))
a1 = 3.
For the induction step, assume that for some natural k we have a number ak in

the interval (1, 5k) with the property 5k | a3
k − ak + 1; we proceed to construct ak+1.

1 Note that in view of the mutual position of the points M , A, B, the point M lies in the exterior
of any circle passing through the points A, B, hence also in the exterior of m. The half-line MO

thus indeed has, if it is not tangent to m, exactly two different common points with m.
2 Similarly one can prove the following useful fact: for any polynomial F with integer coefficients,

and arbitrary integers a, b, the difference F (a)− F (b) is an integer multiple of a− b.
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The remainder of a3
k − ak + 1 upon division by 5k+1 must be a number divisible by

5k, hence, one of the numbers

0, 5k, 2 · 5k, 3 · 5k, 4 · 5k.

Let us thus write this number in the form r · 5k, where r ∈ {0, 1, 2, 3, 4}, and seek
the number ak+1 in the form ak+1 = ak + s · 5k for suitable s ∈ {0, 1, 2, 3, 4}. (It is
immediate that for r = 0 we can take ak+1 = ak, i.e. s = 0). From the condition
1 < ak < 5k and the inequalities ak 6 ak+1 6 ak + 4 · 5k we see already now that the
condition 1 < ak+1 < 5k+1 will be fulfilled regardless of the final choice of s. Further,
for ak+1 of the above form we get

a3
k+1 − ak+1 + 1

5k+1
=

(
ak + s · 5k

)3 −
(
ak + s · 5k

)
+ 1

5k+1

=
a3

k + 3a2
ks · 5k + 3aks252k + s353k − ak − s · 5k + 1

5k+1

= 3aks25k−1 + s352k−1 +

(
a3

k − ak + 1
)
− r · 5k

5k+1
+

(
3a2

k − 1
)
s + r

5
.

The last sum is an integer whenever both fractions are. The first of them is an integer
in view of the way the number r ∈ {0, 1, 2, 3, 4} was defined. We thus only need to
find an s ∈ {0, 1, 2, 3, 4} such that the second fraction is also an integer, that is, such
that

(
3a2

k − 1
)
s+ r is divisible by five. To this end, it is enough to show that the five

numbers
c(s) =

(
3a2

k − 1
)
s + r, where s ∈ {0, 1, 2, 3, 4},

give different remainders upon division by 5 (one of the remainders must then be
zero). If this were not the case, then we would have 5 | c(s) − c(s′) for some distinct
s, s′ ∈ {0, 1, 2, 3, 4}; and from the expression

c(s) − c(s′) =
(
3a2

k − 1
)
(s − s′)

it would then follow that the number 3a2
k − 1 is divisible by 5. However, 3a2 − 1 is

not divisible by 5 for any integer a; indeed, by the argument from the first paragraph
it is enough to check this for the five values a ∈ {0, 1, 2, 3, 4}:

a 0 1 2 3 4
3a2 − 1 −1 2 11 26 47

This completes the proof by induction.
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First Round of the 57th Czech and Slovak

Mathematical Olympiad

(December 4th, 2007)

MO
1. Solve the system of equations

x2 − y = z2,

y2 − z = x2,

z2 − x = y2

in the domain of real numbers.

Solution. Adding up all three equations and cancelling the quadratic terms gives

x + y + z = 0. (1)

Thus z = −x−y and substituting this into the first equation yields x2−y = (−x−y)2,
or y(2x + y + 1) = 0, hence either y = 0 or 2x + y + 1 = 0.
If y = 0 then (1) implies z = −x and upon substituting for y, z into the original

system we get for the unknown x the single condition x(x− 1) = 0, which is satisfied
only for x = 0 or x = 1. This corresponds to solutions (x, y, z) of the form (0, 0, 0)
and (1, 0,−1).
If 2x + y + 1 = 0, or y = −2x − 1, (1) implies z = −x − y = x + 1. Substituting

these y, z into the original system yields for the unknown x the single condition
x(x + 1) = 0, which is fulfilled only for x = 0 and x = −1. To these correspond the
solutions of he form (0,−1, 1) and (−1, 1, 0).

Conclusion: The given system has exactly four solutions (x, y, z): namely, the
triples (0, 0, 0), (1, 0,−1), (0,−1, 1) and (−1, 1, 0).

2. A prism is given whose bases are two congruent convex n-gons. The number v
of vertices of the prism, the number s of its face diagonals and the number t of
its space diagonals form, in a certain order, the first three terms of an arithmetic
progression. For which n this holds?
(Remark: By faces of the prism we mean both the bases and the lateral faces.
A space diagonal is a segment connecting two vertices which do not lie in the
same face.)

Solution. Any n-gonal prism has exactly n vertices in each of its bases, thus v = 2n.
From each vertex there come out n− 3 diagonals lying in the base and two diagonals
lying in the lateral faces; altogether this is n − 1 face diagonals. From the n vertices
there thus come out 2n(n − 1) diagonals in total, however, each of them is counted
twice; thus s = n(n − 1). Similarly, from each vertex there emanate n − 3 space
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diagonals (to all the vertices of the opposite base, except those three to which the given
vertex is connected by an edge or a face diagonal); hence t = 2n(n−3) : 2 = n(n−3).
We are thus looking for those n > 3 for which the numbers

v = 2n, s = n(n − 1) and t = n(n − 3)

form, in a suitable order, a triple x, y, z with the property y−x = z−y, or y = 1
2(x+z).

An easy check reveals that for n = 3 this is not the case (we get the triple 6, 6, 0), while
for n = 4 we get the triple 8, 12, 4 which has the required property (as 8 = 1

2 (4+12)).
For any n > 5 we have n − 1 > n − 3 > 2, whence, upon multiplying by n, s > t > v;
thus the desired arithmetic mean property must be t = 1

2
(v + s). This gives the

equation

n(n − 3) =
2n + n(n − 1)

2

whose only relevant root is n = 7 (the other root n = 0 has no sense).

Conclusion: the only possible values are n = 4 and n = 7.

3. An angle XSY and a circle k with center S are given in the plane. Consider
an arbitrary triangle ABC with incircle k whose vertices A and B lie on the
half-lines SX and SY , respectively. Find the locus of the vertices C of all such
triangles ABC.

Solution. Let r denote the radius of k and ω the magnitude of the (convex) angle
XSY . Denoting the interior angles of the triangle ABC in the usual way, we have
(Fig. 1)

ω = 6 ASB = 180◦ − 6 SAB − 6 SBA = 180◦ − α + β

2
= 90◦ +

γ

2
.

It follows that the sought locus is an empty set if ω 6 90◦ or ω = 180◦, and that the
interior angle γ in the triangle ABC must be equal to

γ = 2ω − 180◦.

A B

C

S

T

k

r

ω

γ
2

k1

X Y

Fig. 1
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From the right triangle CST , where T is the common point of the circle k with
the side AC (Fig. 1), we express the length of the hypotenuse SC as

SC =
ST

sin 1
2γ

=
r

sin(ω − 90◦)
.

The vertex C thus lies on the circle k1 with center S and radius r1 = r/ sin(ω − 90◦).
In addition to the angle ASB, the angles ASC and BSC (that is, the angles

XSC and Y SC) are also obtuse, since

6 ASC = 90◦ +
β

2
and 6 BSC = 90◦ +

α

2
. (1)

Altogether we thus see that the point C is an interior point of the arc KL of the
circle k1, lying outside the given angle XSY , whose endpoints K, L are determined
by the right angles XSK and Y SL (Fig. 2).

A B

C

S
k

ω

k1

X Y

K
L

Fig. 2

Conversely, if we choose any interior point C of the arc KL, then the half-lines
SX , SY and SC divide the plane into three obtuse angles, with the half-line CS
separating the points X and Y . From the equality SC = r1 it follows that the
tangent from the point C to the circle k lying in the half-plane CSX meets the half-
line CS at an acute angle of ω − 90◦, and thus intersects the half-line SX at a point
which we denote by A. Similarly the tangent from the point C to the circle k lying
in the half-plane CSY intersects the half-line SY at a point which we denote by B.
Let us now choose the values α, β, γ so that ω − 90◦ = 1

2γ, 6 CSK = 1
2β and

6 CSL = 1
2α; the from the full angle at the vertex S we get

α + β

2
= 180◦ − ω = 90◦ − γ

2
, or α + β + γ = 180◦.

An easy calculation shows that the tangent from the point A just found to the circle k,
symmetric to the tangent AC with respect to the line SX , intersects the half-line CS
at an angle of 1

2
γ + α, and similarly it follows that the analogous tangent from the

point B intersects the said half-line at an angle of 1
2γ +β. Since the sum of these two

angles equals 180◦, the two tangents to k must be parallel, and hence coincide (both
points of tangency must lie in the interior of the convex angle XSY ). The triangle
ABC thus has the required properties.

12



Second Round of the 57th Czech

Mathematical Olympiad

(January 24th, 2008)

MO
1. Let n be a given natural number greater than 1. Find all pairs of integers s and t

for which the equations

xn + sx − 2007 = 0, xn + tx − 2008 = 0

have at least one common root in the domain of the real numbers.

Solution. Expressing xn from both equations

xn = 2007 − sx, xn = 2008 − tx

and comparing, we see that 2007 − sx = 2008 − tx, which implies that the common
root can exist only for s 6= t and must equal x = 1/(t − s). This x will be a common
root of the two equations if and only if it is a root of one of them; substituting it
e.g. into the first equation thus yields, upon a small manipulation, the equivalent
condition

(t − s)n−1 ·
(
s − 2007(t − s)

)
= −1.

Since both factors on the left-hand side are integers, they must be the numbers 1
and −1 (in some order), whence in any case t − s = ±1.
a) If t − s = 1, then the last equation reads s − 2007(t − s) = −1. The two

equations
t − s = 1, s − 2007(t − s) = −1

with unknowns s, t have the unique solution s = 2006 and t = 2007. (The common
root is x = 1.)
b) If t − s = −1, then s − 2007(t − s) = (−1)n, from which we find similarly as

in a) the solution s = (−1)n − 2007 and t = (−1)n − 2008. (The common root is
x = −1.)

Conclusion: The problem has exactly two solutions (s, t) = (2006, 2007) and
(s, t) =

(
(−1)n − 2007, (−1)n − 2008

)
.

2. Two circles k1, k2 are given in the plane, with different radii, externally tangent
at a point T . Consider any two points A ∈ k1 and B ∈ k2, both different from T ,
such that the angle ATB is right.
a) Show that all such lines AB are concurrent.
b) Find the locus of midpoints of all such segments AB.

Solution. a) Fig. 1 depicts the diameters CT , DT of the two given circles k1(S1, r1)
and k2(S2, r2), respectively, and a pair of the possible points A, B. Because the

13
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M

k1

k2

Fig. 1

central line S1S2 and the common tangent (perpendicular to it) at T of the circles
divide the plane into four quadrants, it is clear that the two points A, B, which
subtend a right angle at T (and must therefore lie in adjacent quadrants) belong to
the same half-plane determined by the line S1S2.
From the Thaletian theorem it follows that CA ⊥ AT ⊥ TB ⊥ BD, whence

AC ‖ BT and AT ‖ BD. Thus by the AA theorem ∆ACT ∼ ∆BTD, whence
AC : BT = CT : TD = r1 : r2. Now if e.g. r1 > r2, then the line AB intersects the
half-line CT at a point H such that CH : TH = r1 : r2 (in view of the similar triangles
ACH and BTH). Thanks to this relation, the point H is indeed the same for all the
possible lines AB. Similar argument applies also in the case of r1 < r2 (the possibility
r1 = r2 being excluded in the problem formulation). This proves part a).

b) Denote by M the midpoint of the segment AB (Fig. 1) and use again the
relations CA ⊥ AT ⊥ TB ⊥ BD. The segments S1M and S2M are the midsegments
of the trapezoids CTBA and DTAB, respectively, so S1M ‖ TB ⊥ AT ‖ S2M , thus
the angle S1MS2 is right. The pointM thus lies on the Thaletian circle with diameter
S1S2 and is different from the points S1 and S2 (the segment AB does not intersect
the central line S1S2).
Conversely, if M is any point of the above Thaletian circle different from S1,

S2, and if we construct the chord TA of the circle k1 perpendicular to the line S1M
and the chord TB of the circle k2 perpendicular to the segment S2M (Fig. 2), both
angles ATB as well as S1MS2 will be right and the lines S1M , S2M will be the
perpendicular bisectors of the segments TA and TB, respectively. Thus the equalities
MA = MT = MB will hold, implying that M will be the circumcenter of the right
triangle TAB, i.e. will be the midpoint of its hypotenuse AB.
The sought locus of midpoints of the segments AB consists of the circle with

diameter S1S2, with the points S1, S2 excluded.

3. The fields of an n × n board, where n > 3, are coloured black and white as on
the usual chessboard, with the field in the upper left-hand corner being black.
We change the white fields into black ones, in the following manner: in each step
we choose an arbitrary rectangle of size 2 × 3 or 3 × 2, which still contains three
white fields, and we blacken these three fields. For which n can we, after some
number of steps, make the whole board black?

Solution. In each step we blacken exactly three fields, thus the total number of
white fields has to be divisible by three. For even n, this number is equal to 1

2
n2

(since there are as many black fields as white). For odd n, the number of white

14
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fields equals 1
2
(n2 −1) (since there is one more black field than there are white fields).

The numbers 1
2n2 or 1

2 (n2−1) are divisible by three if and only if n = 6k or n = 6k±1,
respectively, for a suitable integer k.
We now show that for any n of the above forms it is indeed possible to blacken

all fields in the board. For n = 6k this is immediate, since the whole board can
be partitioned into disjoint rectangles of size 2 × 3 and we can apply the blackening
procedure in each of them. Note that the same procedure can be applied, in fact, in
any rectangle whose one dimension is divisible by 2 and the other by 3.
For numbers of the form n = 6k ± 1 we describe the blackening algorithm by

induction. For the smallest possible values n = 5 and n = 7, Fig. 3 shows the 2 × 3

n = 5

n = 7

Fig. 3

and 3 × 2 rectangles in the respective boards in which we perform the blackening
(for clarity, from the original chessboard colouring, only the field in the middle — not
covered by the rectangles — is blackened in the picture ). In the induction step it is
enough to show that if it is possible to make completely black any board of size n×n
for an odd n, then the same is true for the board of size (n + 6) × (n + 6). From
Fig. 4 it is clear how to proceed: we first blacken the “central” board n × n (which
has black corner fields), and then we blacken each of the four marked rectangles of
sizes (n +3)× 3 or 3× (n+ 3). (This is possible in view of the observation at the end
of the previous paragraph, since for n odd the number n + 3 is divisible by two.)

15
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Conclusion: The board can be made completely black if and only if n is of the
form 6k, 6k + 1 or 6k − 1 for some integer k.

4. Let M be an arbitrary interior point of the half-circle k with center S and di-
ameter AB. Denote by kA the circle inscribed into the disc sector ASM and kB

the circle inscribed into the disc sector BSM . Show that the circles kA and kB

lie in the opposite half-planes determined by some line perpendicular to the seg-
ment AB. (A circle inscribed into a disc sector touches both arms as well as the
boundary arc of the disc sector.)

Solution. Introduce the notations kA(SA, rA), kB(SB , rB), TA ∈ AB ∩ kA, TB ∈
AB ∩ kB, and φ = 1

2
6 ASM as in Fig. 5. Since the half-lines SSA, SSB are bisectors

of the complementary angles ASM and BSM , the angle SASSB is right and we have
φ = 6 ASSA = 6 SSBTB.

A BS

SA

SB

TA TB

M

k

rA

rB

φ

φ

Fig. 5

The line with the desired property exists if and only if the orthogonal projections
of the circles kA, kB onto the line AB have at most one common point. The said
projections are segments with centers TA and TB and length 2rA and 2rB, respectively.
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Thus the condition from the previous sentence is equivalent to the inequality

TATB > rA + rB . (1)

Let us further denote by r the radius of the half-circle k. Then SSA = r − rA,
SSB = r − rB and from the right triangles SASTA, SBSTB we get

rA = (r − rA) sinφ, TAS = (r − rA) cosφ,

rB = (r − rB) cos φ, TBS = (r − rB) sinφ,

from which it follows by an easy calculation

rA =
r sin φ

1 + sin φ
, TAS =

r cos φ

1 + sin φ
,

rB =
r cos φ

1 + cos φ
, TBS =

r sin φ

1 + cos φ
.

Since TATB = TAS+TBS, we can substitute the last four relations into the inequality
(1) and then perform some equivalent manipulations:

r cos φ

1 + sin φ
+

r sin φ

1 + cos φ
>

r sin φ

1 + sin φ
+

r cos φ

1 + cos φ
,

cos φ(1 + cos φ) + sin φ(1 + sin φ) > sin φ(1 + cos φ) + cos φ(1 + sin φ),

1 > 2 sin φ cos φ,

sin 2φ 6 1.

The last inequality is clearly true, hence so is the inequality (1), completing the
solution of the problem.

Another solution. Without loss of generality we may assume that the radii
of both circles satisfy rA < rB (for congruent circles kA, kB the problem is trivial),
which is equivalent to the inequality SSA > SSB. Since the half-lines SSA, SSB

are bisectors of the complementary angles ASM and BSM , the angle SASSB is
right (Fig. 6). In the right triangle SASSB the angle opposite the longer cathetus
SAS therefore satisfies 6 SASBS > 45◦, while 6 SBSAS < 45◦. This further means
that also the angle SASA, which is smaller than SBSAS (since rA < rB), is smaller
than 45◦, i.e. the angle ASM is acute.
Denote by N the intersection of the central line SASB of the two circles with the

tangent SM and construct the second interior common tangent S′N (Fig. 6), where
S′ is the point at which the said tangent intersects the segment AS (both tangents
are axially symmetric with respect to the central line SASB). Denote its common
point with the circle kB by T , and the common point of the same circle with the first
tangent SM by U .
Consider now the triangle S′SN , whose angle at the vertex S is congruent with

the angle ASM , which we have seen to be acute. We claim that the angle at the
vertex S′ is also acute. Indeed, from the obvious congruence of the pairs of angles
S′NS, TSBU and S′SN , TBSBU (whose arms are perpendicular) it follows for the
sum of angles at the vertices S and N of the triangle S′SN that

6 S′NS + 6 S′SN = 6 TSBU + 6 TBSBU = 2 6 SASBS > 90◦.

This means that the line containing the altitude from the vertex N in the triangle
S′SN has the required property: it separates both circles kA, kB and is perpendicular
to AB.

17
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Final Round of the 57th Czech

Mathematical Olympiad

(March 9–12, 2008)

MO
1. Solve the system of equations

x + y2 = y3,

y + x2 = x3

in the domain of the reals.

Solution. Subtracting the first equation from the second we get

(x3 − y3) − (x2 − y2) + (x − y) = 0,

(x − y)(x2 + xy + y2 − x − y + 1) = 0.

The second factor is positive for any real x and y, since

x2 + xy + y2 − x − y + 1 = 1
2(x + y)2 + 1

2(x − 1)2 + 1
2(y − 1)2

and the three squares cannot simultaneously vanish. Any solution (x, y) of the given
system must therefore satisfy x − y = 0, or y = x, which reduces the system to the
single equation x + x2 = x3 with roots x1 = 0 and x2,3 = 1

2 (1 ±
√

5).

Thus there are exactly three solutions (x, y), namely y = x ∈ {0, 1
2
(1 +

√
5),

1
2 (1 −

√
5)}.
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2. Two circles k1(S1; r1) and k2(S2; r2) are given, with S1S2 > r1 +r2. Consider an
arbitrary triangle ABC with vertex A on the circle k1 and vertices B, C on the
circle k2 such that both lines AB, AC are tangent to k2. Find the locus of the
a) incenters
b) orthocenters

of all such triangles ABC.

Solution. a) The point A can be chosen on the circle k1 arbitrarily, the points B and
C are then necessarily the common points with k2 of the two half-lines starting from
A which are tangent to k2 (Fig. 1). Owing to their symmetry, ABC is an isosceles

A
B

C

P

Q

V
SS1

S2

k1 k2

Fig. 1

triangle, symmetric with respect to the line AS2. Its incenter is the intersection S of
the segment AS2 with the circle k2. Indeed, this point S lies not only on the bisector
of the angle BAC, but also on the bisectors of the two (axially symmetric) angles
ABC and ACB, since 6 ACS = 6 CBS and from the symmetry 6 CBS = 6 BCS.
Conversely, if we choose any point S on the circle k2 in such a way that the half-line
S2S intersects the circle k1 in at least one point, which we denote by A, and to which
we construct the triangle ABC as indicated in the first sentence of this solution, then
the above argument shows that the point S is the incenter of this triangle ABC.
The sought locus is thus the set of the intersections of the circle k2 with all segments
S2A, where A runs through the whole circle k1. This is apparently the shorter of
the two arcs (including the endpoints) into which the circle k2 is divided by the two
half-lines from S2 which are tangent to k1.

b) We show that the sought locus is the circle which is the image of k1 under the
homothety with center S2 and positive coefficient

λ =
2r2

2

S1S
2
2 − r2

1

.

Let us explain why the orthocenter V of each admissible triangle ABC—which lies
on the half-line S2A owing to the axial symmetry (in view of the acute angles ABC,
ACB, the points A, V lie in the same half-plane determined by BC)—is the image
under the above-mentioned homothety of the second intersection Q of the half-line
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S2A with the circle k1, which—just as the first intersection A—runs through the whole
circle k1. (If the half-line S2A is tangent to k1, we set Q = A.) The desired relation
S2V : S2Q = λ is obtained upon dividing the two equalities

S2A · S2Q = S1S
2
2 − r2

1 and 1
2S2V · S2A = r2

2,

which we know justify (thus completing the proof).
The first equality expresses the (positive) power of the point S2 to the circle k1.

The second equality follows from Euclid’s Cathetus Theorem for the cathetus S2B of
the right triangle S2BA, since the center P of the segment BC is not only the foot of
the altitude from the vertex A, but also the center of the rhomb CS2BV , whence

r2
2 = S2B

2 = S2P · S2A = 1
2S2V · S2A.

3. Find for which positive integers a, b is the value of the fraction

b2 + ab + a + b − 1

a2 + ab + 1

equal to an integer.

Solution. We show that the only possible pairs (a, b) are those of the form (1, b),
where b is an arbitrary positive integer.
DenoteX = a2+ab+1 = a(a+b)+1 and Y = b2+ab+a+b−1 = (b+1)(a+b)−1.

If X is a divisor of Y , then it is also a divisor of

(b + 1)X − aY = (b + 1)[a(a + b) + 1] − a[(b + 1)(a + b) − 1] = a + b + 1,

which as a positive multiple of X thus satisfies the inequality

a + b + 1 > X = a2 + ab + 1.

Subtracting the 1 and dividing by a + b gives 1 > a, so necessarily a = 1.
Conversely, if a = 1, then X = b + 2 and Y = b2 + 2b = b(b + 2), so, indeed,

X | Y .

4. The equality
2008 = 1111 + 666 + 99 + 88 + 44

is a decomposition of the number 2008 into the sum of several pairwise distinct
multi-digit numbers, each of which is represented (in the decimal system) using
the same digits. Find
a) at least one such decomposition of the number 8002,
b) all such decompositions of the number 8002 which have the least possible

number of summands (the order of summands is irrelevant).

Solution. a) An example of such decomposition is

8002 = 3333 + 999 + 888 + 777 + 666 + 555 + 333 + 99 + 88 + 77 + 66 + 55 + 44 + 22.
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In the second part we show that this is the only such decomposition of the number 2008
into 14 summands, and that no decomposition into a smaller number of summands
exists.

b) A number of the form aaaa, or aaa, or aa, is the a-multiple of the number
1111, 111, or 11, respectively. Hence any decomposition of the number 8002 of the
type considered can be upon summing the summands with the same number of digits
brought into the form

8002 = 1111k + 111l + 11m,

where k, l, m are nonnegative integers not exceeding 1 + 2 + · · · + 9 = 45 (since the
summands that have been summed were pairwise distinct).
We rewrite the last equality as

8002 = 727 · 11 + 5 = 11(101k + 10l + m) + l,

727 = 101k + 10l + m +
l − 5

11
.

This implies (in view of l 6 45) that l = 11q+5 where q ∈ {0, 1, 2, 3}. We thus obtain
the equality

677 = 101 · 6 + 71 = 101(k + q) + 10q + m,

from which it clearly follows that k + q = 6 and 10q + m = 71. The last system has,
under the above restriction on q, the only solution q = 3, k = 3, m = 41. For l this
gives l = 38.
To obtain the desired decomposition it remains to decompose these numbers k, l,

m into sums of one or more distinct single-digit summands. Since we have exactly the
nine summands 9+8+7+6+5+4+3+2+1 to choose from, whose sum equals 45, it is
evidently simpler to list the decompositions for k, 45−l and 45−m (the decompositions
of l and m can then be obtained upon omitting the used summands from the sum
1 + 2 + · · ·+ 9):

k = 3 = 1 + 2,

45 − l = 7 = 1 + 6 = 1 + 2 + 4 = 2 + 5 = 3 + 4,

45 − m = 4 = 1 + 3.

We have thus found all the 2 · 5 · 2 possible decompositions of the number 8002,
each of which has at least 1 + 6 + 7 = 14 summands, the only decomposition into 14
summands being the one given in part a) of this solution.

5. At some moment, Charles noticed that the tip of the minute hand, the tip of the
hour hand, and a suitable point of the circumference of his watch formed three
vertices of an equilateral triangle. A period t of time elapsed before the next
occurrence of this phenomenon. Find the greatest possible t for a given watch,
given the ratio k of the lengths of the two hands (k > 1), provided that the radius
of the circumference of the watch is equal to the length of the minute hand.

Solution. We will show that t is equal to 4/11 hours, independent of the ratio k of
the lengths of the hands.
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Denote by c the circumference of the watch, by S its center, and by M the tip of
the hour hand (Fig. 2). Let us first explain why for each fixed M there exist precisely
two equilateral trianglesMXY with vertices X , Y lying on the circle c. Since the line
SM must be the axis of the chord XY , hence, also the bisector of the angle XMY ,
both lines MX , MY meet the line SM at the same angle of 30◦. Thus the triangle
MXY coincides with one of the equilateral trianglesMV1V2, MV3V4 shown on Fig. 2.
The points Vi divide the circle c into four arcs. At points on the arc V2V3, the

segment V2V3 subtends an angle of the same size as 6 V2V4V3, i.e. 60◦; similarly for
the arc V4V1. Thus

6 V2SV3 = 6 V4SV1 = 120◦.

Consequently,
6 V1SV2 + 6 V3SV4 = 120◦.

It follows that both angles V1SV2 and V3SV4 are smaller than 120◦.
We may visualize the situation by thinking of the hour hand as being motionless

and the minute hand rotating around the circle S at the angular speed of (360−30)◦ =
330◦ per hour. We have seen that the phenomenon we are interested in occurs precisely
when the tip V of the minute hand coincides with one of the four points Vi. Between
two consecutive occurrences of the phenomenon, the minute hand thus advances by
an angle of either 120◦, or 6 V1SV2 or 6 V3SV4 which are both less than 120◦ (and
depend on the ratio k). The greatest possible period t is thus independent of the
ratio k and equals 120/330 hours.

6. Find the greatest real number p and the least real number q for which the inequal-
ities

p <
a + mb

b + ma

< q

hold in an arbitrary triangle ABC with sides a, b and medians ma, mb.
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Solution. We show that the sought numbers are p = 1/4 and q = 4. It is enough
to prove that q = 4, since the other bound p = 1/4 then follows by observing that
interchanging the sides a, b changes the value of the fraction to the reciprocal.
From the triangle inequality it follows that

1
2a < b + ma and 1

3mb < 2
3ma + 1

2b.

We multiply the first inequality by two, the second one by three, and add these up:

a + mb < (2b + 2ma) +
(
2ma + 3

2b
)

= 7
2b + 4ma < 4(b + ma).

It follows that every number q > 4 has the desired property; we thus only need to
show that no number q < 4 can have it. To that end, consider the isosceles triangle
ABC in which a = c = 1 and b ∈ (0, 2) (such triangle exists for any b in this interval).
From the general formulas

m2
a =

2b2 + 2c2 − a2

4
, m2

b =
2a2 + 2c2 − b2

4

we obtain ma = 1
2

√
1 + 2b2 and mb = 1

2

√
4 − b2, whence

a + mb

b + ma

=
2 +

√
4 − b2

2b +
√

1 + 2b2
.

The last fraction can be made arbitrarily close to 4 by choosing b small enough. This
can be seen as follows: if we choose any ǫ > 0, then for all sufficiently small positive
b we will have

√

4 − b2 > 2 − ǫ, 2b < ǫ and
√

1 + 2b2 < 1 + ǫ,

so
a + mb

b + ma

>
4 − ǫ

1 + 2ǫ
,

and it is easy to choose ǫ > 0 so that the last fraction if greater than any given q less
than 4. It is enough take

ǫ <
4 − q

1 + 2q
.

23



Czech-Slovak-Polish Match

Zwardoń, June 23–24, 2008

MO
1. Determine all triples (x, y, z) of positive numbers satisfying the system of equa-

tions
2x3 = 2y(x2 + 1) − (z2 + 1),

2y4 = 3z(y2 + 1) − 2(x2 + 1),

2z5 = 4x(z2 + 1) − 3(y2 + 1).

Solution. For any integer k > 3 and any x > 0 we have

2xk
> [(k − 1)x − (k − 2)](x2 + 1). (0)

To see this, observe that, by AM-GM inequality,

xk + xk + x + x + . . . + x
︸ ︷︷ ︸

(k−3)times

> (k − 1)x3,

and add it to
(k − 2)(x2 − 2x + 1) > 0.

Note that we have equality if and only if x = 1.
Therefore, for x, y, z satisfying the system of equations, we have

2y(x2 + 1) − (z2 + 1) > (2x − 1)(x2 + 1),

3z(y2 + 1) − 2(x2 + 1) > (3y − 2)(y2 + 1),

4x(z2 + 1) − 3(y2 + 1) > (4z − 3)(z2 + 1),

or
2(y − x)(x2 + 1) + (x − z)(x + z) > 0,

3(z − y)(y2 + 1) + 2(y − x)(y + x) > 0,

4(x − z)(z2 + 1) + 3(z − y)(z + y) > 0.

(1)

Now suppose x > max{y, z}. Then from the second inequality of (1) we infer
that y 6 z and

2(y − x)(x2 + 1) + (x − z)(x + z) 6 (z − x)
(
2(x2 + 1) − (x + z)

)

6 (z − x)(2x2 − 2x + 2) 6 0,

which, by the first inequality in (1), implies x = y = z.
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If y > max{x, z}, then z 6 x by the third inequality in (1) and

3(z − y)(y2 + 1) + 2(y − x)(y + x) 6 (x − y)
(
3(y2 + 1) − 2y − 2x

)

6 (x − y)(3y2 − 4y + 3) 6 0,

hence, by the second inequality in (1), x = y = z.
Finally, if z > max{x, y}, then x 6 y by the first estimate in (1) and, as previ-

ously,

4(x − z)(z2 + 1) + 3(z − y)(z + y) 6 (y − z)(4z2 − 6z + 4) 6 0,

which again implies x = y = z. Thus we have equality in (0) and hence x = y = z = 1.
We easily check that this is the solution to the system.

2. Given is a convex hexagon ABCDEF , such that 6 A = 6 C = 6 E and AB = BC,
CD = DE, EF = FA. Prove that the lines AD, BE and CF have a common
point.

Solution. Assume that the angle bisectors of the angles 6 B and 6 D intersect at P
(Fig. 1). We shall prove that the hexagon ABCDEF has an inscribed circle, whose
center is P . Then the conclusion follows from Brianchon’s Theorem.
The equality AB = BC implies that the triangles ABP and CBP are congru-

ent. Hence we have 6 BAP = 6 BCP = x. Similarly, triangles CDP and EDP are
congruent, so we obtain 6 DCP = 6 DEP = y.

A

B

C

D

E

F

P

x
x
y

yz

z

Fig. 1

Moreover, we have AP = CP = EP , which together with the equality AF = EF
implies that the triangles AFP and EFP are congruent. Thus the angle bisector of
the angle 6 F passes through the point P and 6 FAP = 6 FEP = z.
Now the equalities 6 A = 6 C = 6 E are equivalent to z +x = x+y = y+z, which

yields x = y = z. Therefore the angle bisectors of the angles 6 A, 6 C and 6 E all
pass through the point P . Thus P is the center of the inscribed circle of the hexagon
ABCDEF , as claimed.
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3. Determine all prime numbers p, such that the number

(
p

1

)2

+

(
p

2

)2

+ . . . +

(
p

p − 1

)2

is divisible by p3.

Solution. We start from the observation that for k = 1, 2, . . . , p we have

(
p − 1

k − 1

)

≡ ±1 (mod p). (1)

To see this, note that
p − 1 ≡ −1 (mod p),
p − 2 ≡ −2 (mod p),
...

...
...

k ≡−(p − k) (mod p),

hence, multyplying,
(p − 1)!

(k − 1)!
≡ ±(p − k)! (mod p)

and (1) follows. This can be written in an equivalent form

k

p

(
p

k

)

≡ ±1 (mod p),

which implies that
(

p

k

)

= p · akp ± 1

k
,

for some integer ak. Therefore, if p satisfies the given conditions, we have

p
∣
∣
∣

p−1
∑

k=1

(akp ± 1)2

k2
,

or p | ∑p−1
k=1 1/k2, where by 1/m we understand the unique integer 1 6 l 6 p − 1

satisfying ml ≡ 1 (mod p). Now observe that 1/k2 ≡ (1/k)2 (mod p) and

p−1
∑

k=1

1

k2
≡

p−1
∑

k=1

k2 =
p(p − 1)(2p − 1)

6
(mod p),

which is divisible by p if and only if p > 5.
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4. Prove that there exists a positive integer n, such that for all integers k the number
k2 + k + n has no prime divisors less than 2008.

Solution. Let p < 2008 be a fixed prime number. There exists r = r(p) such that
k2 + k 6≡ r (mod p) for any integer k; this follows, for example, from the fact that if
k ≡ 0 or k ≡ p − 1 (mod p), then k2 + k ≡ 0 (mod p).
Now if {p1, p2, . . . , pm} is the set of all prime numbers not exceeding 2008, we

take n satisfying

n ≡ pj − r(pj) (mod pj), j = 1, 2, . . . , m,

which exists due to Chinese Remainder Theorem. This number has the desired prop-
erty.

5. Given is a regular pentagon ABCDE. Determine the least value of the expression

PA + PB

PC + PD + PE
,

where P is an arbitrary point lying in the plane of the pentagon ABCDE.

Solution. Without loss of generality assume that the given pentagon ABCDE has
the side equal to 1. Then the length of its diagonal is equal to

λ =
1 +

√
5

2
.

Set a = PA, b = PB, c = PC, d = PD, e = PE (Fig. 2).

A B

C

D

E

P

a b

c

de
λ λ

Fig. 2

Applying the Ptolemy inequality for the (not necessarily convex) quadrilaterals
APDE, BPDC and PCDE we obtain (respectively)

a + d > eλ, b + d > cλ, e + c > dλ.
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We multiply the third inequality by
λ + 2

λ + 1
and add together with the first and the

second inequalities. As a result we obtain

a + b + 2d + e · λ + 2

λ + 1
+ c · λ + 2

λ + 1
> eλ + cλ + d · λ(λ + 2)

λ + 1
.

Grouping the respective terms, the above inequality reduces to

a + b >
λ2 − 2

λ + 1
(c + d + e).

Therefore
a + b

c + d + e
>

λ2 − 2

λ + 1
=

√
5 − 2.

The equality holds if and only if the convex quadrilaterals APDE, BPDC and
PCDE are cyclic. This condition is satisfied if and only if the point P lies on the
minor arc AB of the circumcircle of the pentagon ABCDE (Fig. 3). Therefore the

smallest possible value of the given expression is
√

5 − 2.

A B

C

D

E

P

Fig. 3

6. Find all triples (k, m, n) of positive integers with the following property:
The square with the side length m can be cut into some number of rectangles of
dimensions 1 × k and exactly one square of the side length n.

Solution. Answer: The triples (k, m, n) must satisfy n 6 m and at least one of the
two conditions:
1◦ k | m − n,
2◦ k | m + n and r + n 6 m, where r is the remainder of m modulo k.
We start from proving that if (k, m, n) are as above, then the cut is possible. We

identify the large square with [0, m]× [0, m]. If k | m−n, then we first cut the m×m
square into the square [0, n] × [0, n] and rectangles [0, n] × [n, m] and [n, m] × [0, m].
These rectangles can trivially be cut into rectangles of dimension 1 × k. If k | m + n
and r + n 6 m, then we cut [0, m] × [0, m] into a square [r, r + n] × [r, r + n] and
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rectangles [0, r]× [0, n + r], [r, m]× [0, r], [r + n, m]× [r, m] and [0, n + r]× [r + n, m]
(they are well defined if r +n 6 m), each of which can be trivially cut into rectangles
1 × k. Note that we have used the assumption r + n 6 m here.
Now we show that the conditions on (k, m, n) are necessary. Suppose the smaller

square is equal to [p, p + n] × [q, q + n]; by symmetry we may assume that q > 1.
First we show that r + n 6 m. Each unit square [i, i + 1] × [0, 1], where i ∈

{p, p + 1, . . . , p + n − 1}, is contained in some rectangle 1 × k coming from the cut.
If we had r + n > m, then we would have m − n < k and this would imply that each
such rectangle would be “level”, i.e., of the form [t, t + k] × [0, 1]. Let S denote the
union of these “level” rectangles and let P (S) denote the area of S. Note that we
have n 6 P (S) 6 m and P (S) is divisible by k. This contradicts r + n > m.
Now we show that k | m − n or k | m + n. Suppose that this is not true. The

idea is to write an integer aij in each unit square [i− 1, i]× [j − 1, j], 1 6 i, j 6 m, in
such a way that
(a) for any rectangle 1 × k of the cut the sum of numbers lying inside equals 0,
(b) the sum of all the numbers and the sum of the numbers lying inside the square

n × n are different.
The existence of such a sequence clearly yields the claim.
A second idea is to work with the sequences (aij) of the form aij = aibj , where

(ai)
m
i=1 and (bj)

m
j=1 are k-periodic and

k∑

i=1

ai =

k∑

j=1

bj = 0. (1)

This implies (a); furthermore, (b) takes form

m∑

i=1

ai ·
m∑

j=1

bj 6=
p+n
∑

i=p+1

ai ·
q+n
∑

j=q+1

bj ,

or, by periodicity and (1),

r∑

i=1

ai ·
r∑

j=1

bj 6=
p+s
∑

i=p+1

ai ·
q+s
∑

j=q+1

bj , (2)

where s denotes the remainder coming from the division of n by k.
If r = 0, then the left-hand side is 0. Furthermore, as k - m−n, we have s > 0; it

suffices to take ap+1 = ap+2 = . . . = ap+s = bq+1 = bq+2 = . . . = bq+s = 1 and choose
the remaining ai’s and bj ’s so that the periodicity and (1) hold.
Suppose then, that r > 0. The conditions k - m − n, k - m + n imply r 6= s,

r + s 6= k. We set b1 = b2 = . . . = br = 1 and pick the remaining bj ’s so that
periodicity and (1) hold. Let A = {1, 2, . . . , r}, B = {p+1, p+2, . . . , p+ s} (mod k)
denote the sets of indices appearing in the sums involving (aj). Note that we take the
set B modulo k. Consider two cases:
i) A ∪ B 6= {0, 1, . . . , k − 1}. Then, as A 6= B (as r 6= s) and A 6= ∅, we may

choose a′
is with i ∈ A ∪ B in such a way that

∑

i∈A

ai = 1,
∑

i∈B

ai = 0
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(for example, if A \ B 6= ∅, set ai = 0 for all i ∈ A ∪ B except for one i ∈ A \ B, for
which ai = 1; if A ⊂ B, take ai = 0 for i ∈ A ∪ B except for one i ∈ A, for which
ai = 1 and except for one j ∈ B \ A, for which aj = −1) and complete the sequence
(ai) so that it satisfies periodicity and (1). This completion is possible as there exists
i ∈ {0, 1, . . . , k− 1} not covered by A∪B. Then the right-hand side of (2) is 0, while
the left one is not.
ii) A∪B = {0, 1, . . . , k−1}. Then A 6⊆ B and B 6⊆ A; furthermore, as r + s 6= k,

we have A ∩ B 6= ∅. Therefore, there exist i1 ∈ A \ B, i2 ∈ B \ A, i3 ∈ A ∩ B and we
set ai1 = 0, ai2 = −1, ai3 = 1 and ai = 0 for i ∈ {0, 1, 2, . . . , k− 1} \ {i1, i2, i3}. Then
we have

r∑

i=1

ai =
∑

i∈A

ai = 1,

p+s
∑

i=p+1

ai =
∑

i∈B

ai = 0

and hence the right-hand side of (2) is 0, while the left one is not.
The proof is complete.
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