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1. Find all real solutions of the system

2 sin x cos(x + y) + sin y = 1,

2 sin y cos(y + x) + sin x = 1.

Solution. Using the familiar formulas

cos(x + y) = cosx cos y − sin x sin y, sin 2x = 2 sin x cosx, cos 2x = 1 − 2 sin2 x

we can rewrite the left-hand side of the first equation as

2 sin x cos(x + y) + sin y = 2 sinx(cosx cos y − sin x sin y) + sin y =

= 2 sinx cosx cos y + (1 − 2 sin2 x) sin y =

= sin 2x cos y + cos 2x sin y =

= sin(2x + y).

Similarly the left-hand side of the second equation equals sin(2y + x). The given
system is thus equivalent to

sin(2x + y) = 1,

sin(2y + x) = 1.
(1)

Since the sine function assumes the value 1 precisely at points of the form 1

2
π +

2kπ, where k is an integer, the solutions of the last system will be precisely those
pairs (x, y) for which there exist integers k, l such that

2x + y = 1

2
π + 2kπ, 2y + x = 1

2
π + 2lπ. (2)

Multiplying the first equation by two and subtracting the second (or expressing one
of the variables from the first equation and substituting it into the second), we obtain
after a small manipulation

x = 1

6
π + 2

3
(2k − l)π, y = 1

6
π + 2

3
(2l − k)π.

The solutions of the system are therefore the pairs ( 1

6
π + 2

3
(2k− l)π, 1

6
π + 2

3
(2l− k)),

where k, l are arbitrary integers. Verification is not necessary, since it is clear from the
argument that these pairs satisfy the relations (2), and, hence, also the system (1),
which is equivalent to the original system.
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Remark. The result can be written also in a different way: since y − x = 1

3
(6l −

6k)π = 2(l − k)π, setting m = l − k, n = 2k − l we can write x = 1

6
π + 2

3
nπ,

y = x + 2mπ, so the solutions are the pairs ( 1

6
π + 2

3
nπ, 1

6
π + 2

3
nπ + 2mπ), where m,

n are arbitrary integers. (If k, l range over all possible pairs of integers, then so do
m, n.)

2. A cyclic quadrangle ABCD is given. Show that the line connecting the ortho-
center of the triangle ABC with the orthocenter of the triangle ABD is parallel
to the line CD.

Solution. Denote by k the circumcircle of the quadrangle ABCD, and by U and V
the orthocenters of the triangles ABC and ABD, respectively (Fig. 1).

A B

C
D

U
V

U ′

V ′

k

Fig. 1

The image U ′ of the point U under the symmetry with respect to the side AB
lies on the circumcircle of the triangle ABC, i.e. on k. (This holds even if the triangle
ABC is obtuse.) Similarly, the image V ′ of the point V under the same symmetry
lies on k.
Assume that the triangles ABC and ABD are acute. The points U , V then

lie in the half-plane ABC. The two perpendiculars CU ′ and DV ′ to the side AB
are parallel, thus the quadrangle CU ′V ′D is a cyclic trapezoid, which has to be
equilateral. From this fact and properties of axial symmetry we obtain the equalities

| 6 CDV ′| = | 6 U ′V ′D| = | 6 UV V ′|.

Since the points C and U lie in the same half-plane determined by the line V ′D, the
lines CD and UV are parallel, which is what we wanted to prove. (We are using the
fact that the points D, V , and V ′ lie on the line in this order.)
In the case when at least one of the triangles ABC and ABD is obtuse, the

argument is quite analogous. The points C, D, V ′ and U ′ always form an equilateral
trapezoid, though not necessarily with vertices in this order.
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3. Find all pairs of natural numbers x, y such that
xy2

x + y
is a prime.

Solution. Assume that the natural numbers x, y and a prime p satisfy the equation

xy2

x + y
= p. (1)

Denote by d the greatest common divisor of x and y. Then x = da and y = db, where
a and b are relatively prime. Substituting into (1), clearing the denominators and
dividing by the positive number d, we obtain

d2ab2 = p(a + b). (2)

Since the numbers a and b are relatively prime, so are the two numbers b2 and a + b
from the two sides of the equality (2). It follows1 that b2 | p. The prime p has only
two divisors: 1 and p, of which the second is not a square; thus necessarily b = 1.
Substituting this into (2) gives

d2a = p(a + 1). (3)

Arguing again as above, i.e. since a is a divisor of the left-hand side of (3), it is also a
divisor of the right-hand side, and as a, a + 1 are relatively prime, we conclude that
a | p. Thus either a = 1, or a = p. We discuss these two cases separately.

If a = 1, (3) reads d2 = 2p. As p is a prime, 2p can be a square only if p = 2.
Then also d = 2 and we arrive at the first solution x = da = 2, y = db = 2.

If a = p, then dividing by the positive number p (3) becomes d2 = p + 1, or
p = (d + 1)(d − 1). As p is a prime and d − 1 < d + 1, necessarily d − 1 = 1
and d + 1 = p. This gives d = 2, p = 3, and we have arrived at the second solution
x = da = dp = 6 and y = db = 2.

It is easy, though not necessary (all the manipulations we performed were equiv-
alent), to check that both pairs are indeed solutions of the original equation (1).

Answer : there are exactly two such pairs (x, y), namely, (2, 2) and (6, 2).

4. Consider the infinite arithmetic sequence

a, a + d, a + 2d, . . . , (∗)

where a, d are natural numbers (i.e. positive integers).
a) Find an example of the sequence (∗) which contains infinitely many k-th
powers of natural numbers, for all k = 2, 3, . . . .

b) Find an example of the sequence (∗), which does not contain a k-th power
of a natural number, for all k = 2, 3, . . .

c) Find an example of the sequence (∗), which does not contain a square of a
natural number, but contains infinitely many cubes of natural numbers.

1 If k and l are relatively prime and k | lm, then k | m.
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d) Show that for all natural numbers a, d, k (k > 1), the following assertion
is true: The sequence (∗) either does not contain a k-th power of a natural
number, or contains infinitely many k-th powers of natural numbers.

Solution. a) Set, for instance, a = 1, d = 1. The sequence (∗) then has the form

1, 2, 3, 4, . . . ,

i.e. contains all natural numbers; among these, there are clearly infinitely many k-th
powers for any k.

b) Set, for instance, a = 2, d = 4. The sequence (∗) then has the form

2, 6, 10, 14, . . . ,

i.e. is formed by all even numbers of the form 4n + 2, where n = 0, 1, 2, . . . . This
sequence certainly does not contain a k-th power of an odd number. On the other
hand, a k-th power of an arbitrary even number is divisible by 2k, hence also by 4
(since we are considering only k > 2); but no number of the form 4n + 2 is divisible
by 4. Our sequence therefore does not contain a k-th power of any natural number,
no matter which k = 2, 3, . . . we choose.

c) Set, for instance, a = 8, d = 16. The sequence (∗) then has the form

8, 24, 40, 56, . . . ,

i.e. consists precisely of the odd multiples 8(2n + 1) of eight, where n = 0, 1, 2, . . . .
This sequence cannot contain a square, because the prime factorization of 8(2n + 1)
contains the prime 2 with multiplicity three (8 = 23 and 2n + 1 is odd), whereas in
the prime factorization of a square, each prime occurs with an even multiplicity.
On the other hand, the sequence contains the infinitely many cubes 8 ·13, 8 ·33, 8 ·

53, . . . , since the cube of an odd number is again odd, thus of the form 2n + 1, and
our sequence consists of all numbers of the form 8(2n + 1).

d) Assume that for the given k > 1, the sequence (∗) contains at least one
k-th power, say, the number mk for some natural m. Thus mk = a + nd for some
nonnegative integer n. We claim that the sequence (∗) then contains also all the
(infinitely many) powers (m + d)k, (m + 2d)k, (m + 3d)k, . . . .
Indeed, if t is any positive integer, then by the binomial theorem

(m + td)k = mk + kmk−1td +

(

k

2

)

mk−2t2d2 + · · · + kmtk−1dk−1 + tkdk =

= mk + d ·
(

kmk−1t +

(

k

2

)

mk−2t2d + · · · + kmtk−1dk−2 + tkdk−1

)

=

= mk + d · M = (a + nd) + dM = a + d(n + M ).

Since M (the expression in the big parentheses) is clearly a positive integer, the
number (m + td)k = a + d(n + M ) is a member of our sequence (∗), and the claim
follows.
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5. In each vertex of a regular 2008-gon there lies one coin. We choose two coins
and move each of them into an adjacent vertex, one in the clockwise direction,
the other anti-clockwise. Decide if, continuing in this fashion, it is possible to
move all the coins into
a) 8 heaps of 251 coins each,
b) 251 heaps of 8 coins each.

Solution. Enumerate the vertices of the given polygon successively by the numbers
1, 2, . . . , 2 008.

a) We describe a way of moving the coins so as to obtain eight 251-coin heaps.
First of all, move successively the coins from the first 251 vertices 1, 2, . . . , 251

into a single heap in vertex 251, compensating their movements by moving “symmet-
rically” the coins from the last 251 vertices 1 758, 1 759, . . . , 2 008 into the vertex 1 758.
This produces the first two 251-coin heaps. We continue by moving analogously all
the coins from the vertices 252 to 502 into a single heap in vertex 502, again com-
pensating by symmetrical movements leading to another 251-coin heap in the vertex
with number 1757− 250, i.e. 1507. We perform this procedure two more times, in the
end obtaining the last two 251-coin heaps in the two adjacent vertices 1004 and 1005.

b) We show that this cannot be achieved.
Assign to each coin the number of the vertex in which it lies (at the moment).

Let us see how the sum S of all these 2 008 numbers changes upon moving any pair
of coins in the manner allowed. If none of the coins is moved between the vertices 1
and 2 008, the value of S is clearly unchanged, since for one of the coins its assigned
number increases by 1, while for the other coin being moved it decreases by 1 (while
for all the remaining coins, which are not being moved, the assigned numbers do not
change). Similarly, S does not change if we simply move a coin from 2008 into 1 and
the other coin from 1 into 2008. Finally, if one of the coins is moved between 1 and
2008 and the other between some other pair of vertices, then S changes into S±2 008,
since the numbers assigned to the two coins that are being moved will either both
increase, or both decrease, by the values of 1 and 2 007, respectively (in both cases).

Summarizing, we thus see that from its original value S0 = 1 + 2 + · · ·+ 2 008 =
1 004 · 2 009, the sum S can only assume values of the form S = S0 + 2 008k, where k
is an integer.

If it were possible to move all the coins into 251 eight-coin heaps, say, at the
vertices with numbers v1, v2, . . . , v251, then we would have the equality

1 004 · 2 009 + 2 008k = 8(v1 + v2 + · · · + v251),

which cannot hold for any integer k, since the right-hand side is a multiple of eight,
while the left-hand side is not (the number 2 008k is divisible by eight, but 1 004 ·2 009
is not). Consequently, no such sequence of movements of the coins exists.

6. A triangle ABC is given. In the interior of its sides AC, BC, there are given
points E, D, respectively, such that |AE| = |BD|. Denote by M the midpoint
of the side AB, and by P the intersection of the lines AD and BE. Show that
the image of the point P in the central symmetry with respect to M lies on the
bisector of the angle ACB.
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Solution. Denote by Q the image of P in the central symmetry with center M .
The point Q will lie on the bisector of the angle ACB if and only if it has the same
distance from the lines AC and BC. Since the segments AE and BD have the same
length, we see that Q will have the same distance from the lines AC and BC if and
only if the triangles AEQ and BDQ have the same area (Fig. 2). We now prove the
equality of these areas.

A B

C

D

E
P

Q

M

Fig. 2

From the construction of the point Q it follows that AQBP is a parallelogram,
i.e. the line QB is parallel to AD; the triangles QBD and QBA thus have equal
areas (having equal altitudes to the common base QB). Similarly from QA ‖ BE it
follows that the areas of the triangles QAE and QAB are equal. Thus the areas of
the triangles AEQ and BDQ are equal as well, as claimed.
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First Round of the 58th Czech and Slovak

Mathematical Olympiad

(December 2nd, 2008)

MO
1. Find all pairs of positive integers m and n for which

√

m2 − 4 < 2
√

n − m <
√

m2 − 2.

Solution. If m, n satisfy the given inequalities, then clearly

m > 2 and 2
√

n − m > 0, (1)

otherwise the square roots would not be defined or the middle term 2
√

n−m would not
be positive, and thus could not be greater than the nonnegative expression

√
m2 − 4.

Assuming that the conditions (1) are satisfied, we can make the following equiv-
alent manipulations of the given inequalities (note that in each of the four squarings
both sides are defined and nonnegative, and equally both divisions are by the positive
number n, so all these manipulations are correct):

2
√

n − m <
√

m2 − 2
∣

∣

2
√

m2 − 4 < 2
√

n − m
∣

∣

2

4n − 4m
√

n + m2 < m2 − 2 m2 − 4 < 4n − 4m
√

n + m2

n + 1

2
< m

√
n

∣

∣

2
m
√

n < n + 1
∣

∣

2

n2 + n + 1

4
< m2n

∣

∣ : n m2n < n2 + 2n + 1
∣

∣ : n

n + 1 +
1

4n
< m2 m2 < n + 2 +

1

n

The last two inequalities hold if and only if the number m2 lies in the open interval
(

n + 1 +
1

4n
, n + 2 +

1

n

)

.

In view of the obvious inequalities 0 < 1

4n
6

1

4
and 0 < 1

n
6 1, this interval contains

the single integer n+2. Under the hypothesis (1), the natural numbers m and n thus
satisfy the original inequalities if and only if m2 = n + 2.

It remains to find which positive integers m, n related by n = m2 − 2 satisfy
under the hypothesis m > 2 also the second of the conditions (1). We perform the
following equivalent manipulations:

2
√

m2 − 2 − m > 0,

2
√

m2 − 2 > m,
∣

∣

2

4(m2 − 2) > m2,

3m2 > 8.

The last inequality holds, however, for any m > 2.
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Answer. The sought pairs are precisely those of the form (m, n) = (m, m2 − 2),
where m > 2 is any positive integer.

2. Let ABC be an acute triangle whose interior angle at the vertex A has mag-
nitude 45◦. Denote by D the foot of the perpendicular from the vertex C, and
let P be an arbitrary interior point of the altitude CD. Show that the lines AP
and BC are perpendicular if and only if the segments AP and BC are congruent.

Solution. We start with the first implication. Let AP ⊥ BC; then the point P is the
orthocenter of the triangle ABC. We need to show that the segments AP and BC
are congruent; we do this by finding two congruent triangles, in which these segments
are a pair of corresponding sides.
Denote by E the intersection of the line BP with the side AC, i.e. E is the

foot of the altitude from the vertex B. From the right triangle ABE and the given
magnitude of the angle BAC, it is easy to see that | 6 PBD| = 45◦. The triangle PDB
is thus right and isosceles, hence |DP | = |DB| (Fig. 1). The similar triangle ADC is
right and, in view of the magnitude of the angle at the vertex A, also isosceles; thus
|DA| = |DC|. By the sas theorem, the right triangles APD and CBD are congruent,
and their hypotenuses AP , BC thus have equal lengths.

45◦

A B

C

P

D

E

Fig. 1

It remains to show the converse implication. Assume that |AP | = |BC|. Since
ADC is an isosceles right triangle, necessarily |AD| = |CD|, so the triangles PAD
and BCD are congruent by the Ssa theorem. Hence |PD| = |BD|, and thus
| 6 ABP | = 45◦. Denote again by E the intersection of the line BP with the side AC.
In the triangle ABE the angle BEA is right, so the line BP is the altitude of the
triangle ABC (Fig. 1) and the point P is therefore its orthocenter. It follows that AP
is the altitude to the side BC, hence AP⊥BC.

3. Find all integers greater than 1 by which a cancellation can be made in some
fraction of the form

3p − q

5p + 2q
,

where p and q are mutually prime integers.
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Solution. The fraction admits cancellation by an integer d > 1 if and only if d is
a common divisor of its numerator and its denominator. Let us thus assume that
d | 3p−q and at the same time d | 5p+2q, where p and q are mutually prime integers.
Adding up the appropriate multiples of the two binomials 3p− q and 5p + 2q, we get

2(3p − q) + (5p + 2q) = 11p and 3(5p + 2q) − 5(3p− q) = 11q.

Since both 3p − q and 5p + 2q are assumed to be divisible by d, the two numbers
11p and 11q must also be multiples of d. However, p and q are mutually prime by
hypothesis and 11 is a prime, thus the numbers 11p and 11q have only one common
divisor greater than 1, namely the number 11. Thus d = 11.

We now need to show that it is indeed possible to make a cancellation by 11 in
some fraction of the given form. That is, we need to find a pair of mutually prime
integers p and q so that 11 | 3p − q and at the same time 11 | 5p + 2q. Solving the
system of equations

3p − q = 11m and 5p + 2q = 11n,

we get (p, q) = (2m + n, 3n− 5m), and p, q will certainly be prime if we choose them
so that q = 3n − 5m = 1, thus e.g. for n = 2 and m = 1, when (p, q) = (4, 1) and the
corresponding fraction is 11/22.

Answer. The only integer greater than 1, which can be cancelled in some fraction
of the given form, is the number 11.
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Second Round of the 58th Czech

Mathematical Olympiad

(January 20th, 2009)

MO
1. A four-digit natural number is given which is divisible by seven. If we write its
digits in the reverse order, we obtain another four-digit natural number, which is
greater and is also divisible by seven. Furthermore, both numbers give the same
remainder upon division by 37. Determine the original four-digit number.

Solution. Denote the given number by n = abcd = 1000a + 100b + 10c + d, and the
one obtained by reversing the order of digits k = dcba = 1000d+100c+10b+a. Since
both numbers k, n give the same remainder upon dividing by 37, their difference

k − n = (1000d + 100c + 10b + a) − (1000a + 100b + 10c + d) =

= 999(d − a) + 90(c − b) = 37 · 27(d − a) + 90(c − b)
(1)

must be divisible by 37, whence 37 | 90(c − b). As 37 is a prime and 90 is not its
multiple, necessarily 37 | c − b. For two digits b, c, this is only possible if b = c.
Conversely, if b = c, then it follows from (1) that the difference k − n is divisible
by 37, regardless of the values of a and d, so the two numbers k and n give the same
remainder upon division by 37. From now on, we can therefore assume that n = abbd
and k = dbba, and will be concerned only with the conditions of the divisibility by
seven.
From the conditions 7 | n, 7 | k we have

7 | k − n = 37 · 27(d − a)

(we have substituted the equality b = c into (1)). Since the numbers 7 and 37 · 27
are relatively prime, we must have 7 | d − a. Since we know that k > n, necessarily
d > a; and as a, d are digits, this is only possible if d− a = 7. Finally, as a is the first
digit of the four-digit number n, we must have a > 0; thus the only possibilities are
a = 1, d = 8 or a = 2, d = 9.
For a = 1 and d = 8, the numbers

n = 1bb8 = 1 008 + 110b = 7 · (144 + 15b) + 5b,

k = 8bb1 = 8 001 + 110b = 7 · (1 143 + 15b) + 5b,

are divisible by seven if and only if 7 | 5b, or b ∈ {0, 7}. We thus get the first two
solutions n = 1 008 and n = 1 778.
Similarly, for a = 2 and d = 9,

n = 2 bb9 = 2 009 + 110b = 7 · (287 + 15b) + 5b,

k = 9 bb2 = 9 002 + 110b = 7 · (1 286 + 15b) + 5b,
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are divisible by seven iff 7 | 5b, which leads to the two remaining solutions n = 2 009
and n = 2 779.

The original four-digit number can be any of the numbers 1 008, 1 778, 2 009 and
2 779 (and no other).

2. Two circles ka and kb are given, whose centers lie on the legs of lengths a and b,
respectively, of a right triangle. Both circles are tangent to the hypotenuse of the
triangle pass through the vertex opposite to the hypotenuse. Denote the radii of
the circles by ρa and ρb. Find the greatest real number p such that the inequality

1

ρa

+
1

ρb

> p
(1

a
+

1

b

)

holds for all right triangles.

Solution. Denote the vertices of the triangle by A, B, C, with A, B lying opposite
the legs with lengths a and b, respectively.

Let us first determine the magnitudes of the two radii ρa and ρb. Denote by
A′ the image of A in the symmetry with respect to the line BC. The circle ka is
the incircle of the triangle A′AB (Fig. 1). The isosceles triangle ABA′ has perimeter
o = 2(b + c) and area S = ab, so by the familiar formula the radius ̺a of its incircle
ka is

̺a =
2S

o
=

ab

b + c
.

Similarly ̺b = ab/(a + c).

C A

B

A′ bb

cc a

ka
kb

Fig. 1

The number p is to satisfy

p 6

1

̺a

+
1

̺b

1

a
+

1

b

=

b + c

ab
+

a + c

ab
a + b

ab

=
a + b + 2c

a + b
= 1 +

2c

a + b
= 1 +

2
√

a2 + b2

a + b

for any right triangle with legs a, b.
Since for a = b the last expression equals 1+

√
2, any such number p must satisfy

p 6 1 +
√

2. If we can show that

2
√

a2 + b2

a + b
>

√
2 (1)
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for any positive a and b, it will follow that p = 1 +
√

2 is the solution of the problem.
The inequality (1) for arbitrary positive a, b is easily shown to be equivalent to

an inequality whose validity is evident:

2
√

a2 + b2 >
√

2(a + b),

4(a2 + b2) > 2(a + b)2,

4a2 + 4b2
> 2a2 + 4ab + 2b2,

2(a − b)2 > 0.

Alternatively, one can appeal to Cauchy’s inequality 2(a2 + b2) > (a + b)2, or to the
inequality between the quadratic and arithmetic mean

√

a2 + b2

2
>

a + b

2
.

Answer. The sought real number p is 1 +
√

2.

Remark. The magnitude of the radii ̺a, ̺b can be derived also in another way:
expressing the sine of the angle ABC in two ways from the right triangles SaBT
a ABC (Fig. 2), we get

̺a

a − ̺a

=
b

c
,

implying that ̺a = ab/(b + c). Similarly for ̺b.

C A

B
T

b

c
Sa

̺a

a − ̺a

ka

Fig. 2

3. Find the magnitudes of the interior angles α, β, γ of a triangle which satisfy

2 sinβ sin(α + β) − cosα = 1,

2 sinγ sin(β + γ) − cosβ = 0.

Solution. Similarly as in the solution of the first problem of the First Round we can
derive the following formula

cosx − 2 sin y sin(x + y) = cos(x + 2y)
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which holds for arbitrary real numbers x, y. From conditions of the given problem
we get the following two equations for magnitudes of the interior angles α, β, γ of a
triangle:

cosα − 2 sin β sin(α + β) = cos(α + 2β) = −1,

cosβ − 2 sin γ sin(β + γ) = cos(β + 2γ) = 0.

This yields

α + 2β = π + 2kπ, (1)

β + 2γ =
π

2
+ lπ, (2)

where k, l are arbitrary non-negative integers. Adding up (1) and (2) we obtain

α + 3β + 2γ =
3π

2
+ (2k + l)π.

Since α, β, γ are magnitudes of interior angles of a triangle (α + β + γ = π) we have

2β + γ =
π

2
+ (2k + l)π, (3)

where k, l are non-negative integers. Further from (2) a (3) we obtain after short
manipulation

β + γ =
π

3
+

2

3
(k + l)π.

Regarding β + γ < π we have k = l = 0, thus

β + γ =
π

3
. (4)

From (2) and (4) it easily follows β = γ = 1

6
π, hence α = 2

3
π.

Conclusion. The magnitudes of interior angles of the considered triangle are
α = 120◦, β = γ = 30◦.

Another solution. From the equality α + β + γ = π and standard goniometric
formulas we have

sin(α + β) = sin γ,

cosα = − cos(β + γ) = − cosβ cos γ + sin β sin γ.

Substituting these values of sin(α + β) and cosα into the first equation of the given
system and simplifying, we get

2 sin β sin γ − (− cosβ cos γ + sin β sin γ) = 1,

cosβ cos γ + sin β sin γ = 1,

cos(β − γ) = 1.
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The last equality holds if and only if β = γ, since the difference of two interior angles
of a triangle always lies in the interval (−π, π), in which the cosine functions assume
the value 1 only at the point zero. We have thus shown that the first equation of the
given system is fulfilled if and only if β = γ.
Now it is easy to solve also the second equation of the system, if we make the

substitution β = γ in it:

2 sin β sin 2β − cosβ = 0,

4 sin2 β cosβ − cosβ = 0,

(4 sin2 β − 1) cosβ = 0.

Hence either cosβ = 0, or sin β = ± 1

2
. However, the equality β = γ for angles

in a triangle means that the angle β is acute, hence cosβ > 0. Thus sin β = 1

2

(the possibility sin β = − 1

2
is ruled out for an angle β in the interval (0, π)). We have

thus arrived at the only possible values β = γ = 30◦, implying α = 120◦. These values
are indeed a solution of the original system, since the first equation holds owing to
the equality β = γ, while the second has been treated under the assumption of β = γ
only by equivalent manipulations.

4. A point D has been chosen in the interior of the side BC of an acute triangle
ABC, and another point P in the interior of the segment AD but not lying on
the median from the vertex C. The line containing this median intersects the
circumcircle of the triangle CPD at a point which we denote by K (K 6= C).
Show that the circumcircle of the triangle AKP passes in addition to A through
another fixed point which does not depend on the choice of the points D and P .

Solution. Denote by φ the magnitude of the angle between the line tc containing the
median from the vertex C and the line containing the side BC of the given triangle.
In view of the definition of the point K, the lines KP and AD will meet also at the
same angle φ. This means, however, that on the circumcircle of the triangle AKP
there also lies the point M of the line tc at which the line AM meets the line tc at
the angle φ. This property is clearly possessed by the point M symmetric to C with
respect to the midpoint of the side AB; and this point does not depend on the choice
of the points D and P (Fig. 3).

C A

B M

D
P

Q

Kϕ

tc

Fig. 3
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Let us now show the above in more detail. Denote by Q the intersection of the
median tc with the segment AD (that is, Q is the “forbidden” choice for the point P ).
The point P lies either in the interior of the segment DQ (Fig. 3), or in the interior
of the segment QA (Fig. 5).

In the former case, the point Q lies in the exterior of the circumcircle of the
triangle CPD, and the point K thus belongs to the interior of the half-line QC.
If the point K lies in the interior of the segment QC, the points C and P are the
opposite vertices of the cyclic quadrangle CDPK, thus | 6 APK| = φ. Furthermore,
the points P and M lie in the same half-plane determined by the line AK, and from
the congruence of the angles AMK and APK it therefore follows that the quadrangle
AMPK is cyclic, so the pointM indeed lies on the circumcircle of the triangle AKP .

If the point K does not lie in the interior of the segment QC and K 6= C (Fig. 4),
then | 6 KPD| = | 6 KCD| = 180◦ − φ, whence | 6 KPA| = φ = | 6 KMA|. (The last
equality holds, of course, also for K = C.) Since the points P and M lie in the
same half-plane determined by the line KA, the point M lies also in this case on the
circumcircle of the triangle AKP .

C A

B M

D
P

Q

K

ϕ

tc

Fig. 4

In the second case the point K lies in the interior of the half-line QM . If K
lies in the interior of the segment QM (Fig. 5), the points P and M lie in opposite
half-planes determined by AK, and from the equality of the angles DCK and DPK

C A

B M

D

P

Q

K

ϕ

tc

Fig. 5
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subtending the chord DK we have | 6 DPK| = φ = | 6 AMK|, which guarantees that
the quadrangle AMKP is cyclic, so that the point M lies on the circumcircle of the
triangle AKP .
If the point K does not lie in the interior of the segment QM (Fig. 6), we have

| 6 KPA| = | 6 KMA| = 180◦ − φ. Since the points P and M lie in the same half-
plane determined by KA, the point M lies also in this case on the circumcircle of the
triangle AKP .

C A

B M

D

P

Q

K

ϕ

tc

Fig. 6
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Final Round of the 58th Czech

Mathematical Olympiad

(March 23–24, 2009)

MO
1. Show that if the numbers p, 3p + 2, 5p + 4, 7p + 6, 9p + 8 and 11p + 10 are all
primes, then the number 6p + 11 is composite.

Solution. Assume that all of the numbers p, 3p+ 2, 5p+ 4, 7p+ 6, 9p+ 8 a 11p+ 10
are primes. Let us see what are the possible remainders of p upon division by five,
i.e. what numbers l from the set {0, 1, 2, 3, 4} and nonnegative integers k can satisfy
p = 5k + l.

⊲ If p = 5k is a prime, then p = 5, but then 11p + 10 = 65 is not a prime.
⊲ If p = 5k + 1, then 3p + 2 = 5(3k + 1) is a prime only if k = 0, but then p = 1
which is not a prime.

⊲ If p = 5k + 2, then 7p + 6 = 5(7k + 4) cannot be a prime for any k > 0.
⊲ If p = 5k + 3, then 9p + 8 = 5(9k + 7) cannot be a prime for any k > 0.

The prime p thus must be of the form 5k + 4. But then 6p + 11 = 5(6k + 7) is a
composite number, for any integer k > 0.

Remark. The least prime p for which all the numbers 3p+2, 5p+4, 7p+6, 9p+8
and 11p + 10 are also primes is p = 2 099.

2. On the shorter of the arcs CD of the circumcircle of a rectangle ABCD, a point
P is chosen. Denote the feet of the perpendiculars from P onto the lines AB, AC
and BD by K, L and M , respectively. Show that the angle LKM has magnitude
45◦if and only if ABCD is a square.

Solution. We will show that the angle LKM has the same magnitude as the angle
CBD (Fig. 1). This already implies the desired assertion in a trivial way (the angle
CBD has magnitude 45◦ if and only if |BC| = |CD|, i.e. if and only if ABCD is a
square).

A B

CD

P

K

L

M

Fig. 1
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The points B, K, M , P lie, in this order, on the Thaletian circle over the di-
ameter BP . For the magnitudes of the angles subtending the chord PM we thus
have | 6 PKM | = | 6 PBM |. Similarly the points A, K, L, P lie (in this order) on the
Thaletian circle over the diameter AP and for the angles subtending the chord PL
we have | 6 LKP | = | 6 LAP |. Finally, for the magnitudes of the angles subtending the
chord CP in the circumcircle of the rectangle ABCD we obtain | 6 CAP | = | 6 CBP |.
Combining these equalities yields

| 6 LKM | = | 6 LKP | + | 6 PKM | = | 6 LAP | + | 6 PBM | = | 6 CAP | + | 6 PBD| =

= | 6 CBP | + | 6 PBD| = | 6 CBD|,
which is what we wanted to prove.

Remark. The above argument applies also in the trivial case when P = C or
P = D; some of the angles considered will then have zero magnitude.

Another solution. We again show that the angles LKM and CBD have the
same magnitude. Denote by N the foot of the perpendicular from the point P onto
the line BC. The points K, L, N lie on Simpson’s line corresponding to the point
P and triangle ABC (Fig. 2). The Thaletian circle over diameter PB contains the
points K, M and N . By the magnitudes of the angles subtending the chord MN of
the same circle we thus get

| 6 LKM | = | 6 NKM | = | 6 NBM | = | 6 CBD|.

A B

CD

P

K

L

M

N

Fig. 2

3. Find the least positive number x with the following property: if a, b, c, d are
arbitrary positive numbers whose product is 1, then

ax + bx + cx + dx
>

1

a
+

1

b
+

1

c
+

1

d
.

Solution. Let a, b, c, d be positive numbers whose product equals 1. From the
inequality between the arithmetic and geometric mean of the three numbers ax, bx,
cx, with arbitrary x > 0, we obtain

ax + bx + cx

3
>

3
√

axbxcx =
3

√

1

dx
.
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Choosing x = 3 gives the inequality 1

3
(a3 + b3 + c3) > 1/d. Similarly,

1

3
(a3 + b3 + d3) > 1/c, 1

3
(a3 + c3 + d3) > 1/b, 1

3
(b3 + c3 + d3) > 1/a.

Adding up these four inequalities we obtain

a3 + b3 + c3 + d3
>

1

a
+

1

b
+

1

c
+

1

d
,

so for x = 3 the given inequality always holds.

We now show that x = 3 is the smallest number with this property, that is, that
for any positive x < 3 there is some quadruple (a, b, c, d), abcd = 1, for which the
given inequality fails. We will look for such a quadruple in the form a = b = c = t
and d = 1/t3 with suitable t > 1 (depending on x < 3). Positive numbers a, b, c, d
like this certainly satisfy abcd = 1, while

ax + bx + cx + dx = 3tx +
1

t3x
< 4tx and

1

a
+

1

b
+

1

c
+

1

d
=

3

t
+ t3 > t3.

Thus if we can choose t so that 4tx < t3, then the desired inequality will be violated.
In view of the condition x < 3, the inequality 4tx < t3 is equivalent to

t > 4
1

3−x ,

which is certainly fulfilled for t large enough.

Conclusion. The least number with the desired property is x = 3.

4. We are interested in natural numbers (positive integers) n with the property that
there exist exactly four natural numbers k such that n + k is a divisor of n + k2.
a) Show that n = 58 has this property, and find the corresponding four num-
bers k.

b) Show that an even number n = 2p, where p > 3, has this property if and
only if both p and 2p + 1 are primes.

Solution. From the equality n+k2 = (k+n)(k−n)+n(n+1) we see that n+k | n+k2

is equivalent to n + k | n(n + 1). The number of such k is equal to the number of
divisors of D = n(n + 1) which are greater than n.

a) For n = 58, the prime factorization of the corresponding D = 58 ·59 = 2 ·29 ·59
reveals that the divisors of D greater than 58 are precisely the four numbers 59,
2 · 59 = 118, 29 · 59 = 1 711 and 2 · 29 · 59 = 3 422. These are equal to 58 + k,
so the corresponding four values of k are, in turn, k = 1, k = 60, k = 1 653 and
k = 3 364 = 582. (We remark that the two numbers k = 1 and k = n2 satisfy the
condition n + k | n + k2 for any n.)

b) For an even n = 2p, where p > 3, we have D = 2p(2p + 1), and we can easily
list four divisors of D which are greater than n = 2p:

2p + 1 < 2(2p + 1) < p(2p + 1) < 2p(2p + 1). (1)
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If both p and 2p+1 are primes, that it is clear that D cannot have any other divisors
larger than n, and thus n = 2p has the desired property.
On the other hand, if at least one of the numbers p, 2p + 1 is composite and

p > 3, we will show that the corresponding number D has at least one more divisor
greater than n in addition to those listed in (1). We distinguish two cases, depending
on which of the numbers p, 2p + 1 is composite.
(i) If p is composite, then it is divisible by some q, 2 6 q 6

1

2
p, and the number

D has 2q(2p+1) as a divisor. If q 6= 1

2
p, then this divisor lies between the second and

the third of the divisors listed in (1):

2(2p + 1) < 2q(2p + 1) < p(2p + 1).

If q = 1

2
p is the only nontrivial divisor of p, then necessarily p = 4, thus 2p + 1 = 9 is

also composite, and we can continue as in the part (ii) below.
(ii) If the (odd) number 2p + 1 is composite, then it is divisible by some q,

3 6 q < p, and the number D has 2pq as a divisor which lies between the second and
the third of the divisors listed in (1):

2(2p + 1) < 2pq < p(2p + 1), since q > 2 +
1

p
and q < p +

1

2
.

This completes the proof of the part b).

5. In each vertex of a regular n-gon A1A2 . . . An there lies a certain number of coins:
in the vertex Ak there are exactly k coins, for each 1 6 k 6 n. We choose two
coins and move each of them into one of the neighbouring vertices in such a way
that one is moved clockwise and the other anti-clockwise. Decide for which n it
is possible to achieve, after a finite number of steps, that for each k, 1 6 k 6 n,
there are exactly n + 1 − k coins in the vertex Ak.

Solution. We assign to each coin the index i of the vertex Ai in which it lies (thus
i ∈ {1, 2, . . . , n}), and we update these numbers after each movement. Let us observe
how the sum S of all these numbers can change upon a single movement.
If no coin is moved between the pair of vertices A1 and An, then the sum S

remains unchanged, since one of the numbers assigned to the coins increases by one,
while the second one decreases by one (and the other are unaffected). Similarly, S does
not change if we move one coin from A1 into An, while moving the other coin from
An into A1. If one coin is moved from A1 into An and the other from Ai into Ai+1

(where 1 6 i 6 n − 1), then the sum S is increased by (n − 1) + 1 = n. Finally,
if we move one coin from An into A1 and the other coin from Ai into Ai−1 (where
2 6 i 6 n), then the sum S decreases by n. In summary, it follows that the remainder
of S upon division by n does not change.
In the original position, the sum S equals

1 · 1 + 2 · 2 + · · · + n · n =
n

∑

k=1

k2 =
1

6
n(n + 1)(2n + 1),
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while in the desired final position, it would be equal to

n
∑

k=1

k(n + 1 − k) = (n + 1)

n
∑

k=1

k −
n

∑

k=1

k2 =

=
1

2
n(n + 1)2 − 1

6
n(n + 1)(2n + 1) =

1

6
n(n + 1)(n + 2)

(we have used the familiar formulas for the sums of the first n natural numbers and
of their squares). Thus these two values of S should give the same remainder upon
division by n, i.e. their difference 1

6
n(n+1)(n−1) should be divisible by n. The number

1

6
(n+1)(n−1) = 1

6
(n2−1) thus must be an integer. Checking all the possible values 0

to 5 of the remainders mod 6 we find that this happens if and only if n has remainder
either 1 or 5 upon division by 6. In the rest of this solution, we show that for all such
n it is indeed possible to move the coins into the desired position.

Let us denote the (single) coin which is originally in the vertex A1 byM . We will
be moving all coins exceptM in the same common direction, while the only coin moved
in the opposite direction will be M (and we will not be bothered about the actual
position of M during the process). The final position of M will be determined by the
above property of the sum S: the index i of the vertex Ai, in which M finds the final
position, is uniquely determined by the fact that the final value of the sum S must
give the same remainder upon division by n as its initial value—this is so because the
indices of the vertices form a complete system of remainders mod n.

Using the above procedure of permanently moving the coin M , we can achieve
that any one of the other coins can be moved into any vertex we choose (without
changing the locations of the remaining coins, except M ). After a finite number of
steps, we can thus achieve that there are exactly n + 1 − i coins different from M in
the vertex Ai, for each i > 1; in the remaining vertex A1, there will be n − 1 coins
different from M (since the total number of coins remains the same all the time),
while the coinM ends up in some—as yet unknown—vertex. If we can show that this
vertex is A1, then we are finished. However, this happens if and only if the number
n of vertices is such that the sum S gives the same remainder upon division by n in
the initial and in the final position. And we have found all such n in the fist part of
the solution.

Answer. The coins can be moved into such position if and only if n gives remain-
der either 1 or 5 upon division by six.

6. Two distinct points O and T are given in the plane ω. Find the locus of vertices
of all triangles lying in ω whose centroid is T and whose circumcenter is O.

Solution. Consider a point A in the plane ω. In order that A be a vertex of a triangle
as required, A must be different from T and O. We first describe how to construct a
triangle ABC if its vertex A, its centroid T and its circumcenter O are given (for three
mutually distinct points A, O, T ). Then we check for which points A it is impossible
to construct such triangle.

Denote by A′ the midpoint of the side BC. The point A′ is the image of A in
the homothety with center T and coefficient − 1

2
. If A′ 6= O, the points B and C

lie on the perpendicular p through A′ to the line OA′, and at the same time on the
circumcircle k with center O and radius |OA| (Fig. 3).
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Fig. 3

For a given A, it is always possible to construct its image A′ in the homothety
as above. Assume first that A′ 6= O. In order to obtain two different points B and C,
the line p must be a secant of the circle k. This happens if and only if |OA′| < |OA|.
Denote by O′ the image of O in the homothety with center T and coefficient −2.
Then |O′A| = 2|OA′|, so the above condition can be expressed as |O′A| < 2|OA|.
The point A must therefore lie in the exterior of the Apollonian circle m(S; |ST |),
where S is the point symmetric to T with respect to O (Fig. 4).

S O
T

O′

A

A′

m

Fig. 4

Thus if A′ 6= O, or A 6= O′, the construction yields three points A, B, C. These
will be vertices of a triangle as required, provided they are not collinear. They are
collinear if and only if the line BC coincides with the line AT , i.e. if and only if the
lineOA′ is perpendicular toAT . The pointA′ thus must not lie on the Thaletian circle
over diameterOT , i.e. (upon applying the homothety with center T and coefficient−2)
the point A must not lie on the Thaletian circle with diameter O′T (Fig. 5).

O T O′

A

A′

Fig. 5
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In the case when the point A coincides with O′, i.e. A′ = O, we can take in-
stead of the perpendicular p any line (different from AT ) passing through O (Fig. 6).
In this way we obtain infinitely many different triangles ABC with right angles at
the vertex A which satisfy the conditions of the problem.

C

B

A
T

O = A′

k

Fig. 6

S O T O′

m

Fig. 7

Conclusion. The sought locus is the exterior of the circle m, except for the points
lying on the Thaletian circle with diameter O′T , but including the point O′ (Fig. 7).
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