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1. Find all real solutions of the system

√

x2 − y = z − 1,
√

y2 − z = x − 1,
√

z2 − x = y − 1.

Solution. The left hand sides of the equations are square roots, i.e. non-negative,
thus right hand sides are non-negative as well and z > 1, x > 1, y > 1.

We square the equations to get

x2 − y = (z − 1)2, y2 − z = (x − 1)2, z2 − x = (y − 1)2,

and sum up and simplify:

(x2 − y) + (y2 − z) + (z2 − x) = (z − 1)2 + (x − 1)2 + (y − 1)2,

(x2 + y2 + z2) − (x + y + z) = (z2 + x2 + y2) − 2(z + x + y) + 3,

x + y + z = 3.

On the other hand, summing up the inequalities x > 1, y > 1 a z > 1 we
obtain x + y + z > 3, therefore x = y = z = 1 is the only possibility. The triple
(x, y, z) = (1, 1, 1) is indeed a solution.

Conclusion: The problem has the unique solution (x, y, z) = (1, 1, 1).

2. Let ABCD be a rhombus and let a tangent of its incircle cut the sides BC and
CD, and denote R, S the intersections of the tangent with the lines AB, BC
respectively. Prove that the value of the product |BR| · |DS| is independent of
the choice of the tangent.

Solution. Let U , V ,W , T be the points of tangency of the incircle with the sides AB,
BC, DA, and with the tangent respectively (Fig. 1). Further let X be the intersection
point of the tangent and the side BC, and let a = |AB| = |AD|, b = |BU | = |BV | =
|DW | be fixed quantities, while r = |BR| and s = |DS| are the variables dependent
on the choice of the tangent. We will show that the product |BR| · |DS| (= r · s)
equals to a · b.
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The point R is the center of similitude of the triangles ARS and BRX. Moreover
the incircle (of the triangle ARS) is simultaneously being the excircle of the triangle
BRX tangent to the side BX. According to the well-known fact, the center of BX
is the symmetry center of the points of tangency of the incircle and of the excircle
with BX. This means that the ratio |SW | : |AR| in the triangle ARS corresponds to
the ratio |BV | : |BR| in the triangle BRX, that is

b + s

a + r
=

b

r
, and r · s = a · b.

which completes the proof.

3. There are numbers 1, 2, . . . , 33 written on a blackboard. In one step we choose
two numbers on the blackboard such that one of them divides the other one, we
erase the two numbers and write their integer quotient instead. We proceed in
this manner until no number on the blackboard divides another one. What is
the least possible amount of numbers left on the blackboard?

Solution. In the process, apparently only numbers from the set M = {1, 2, . . . , 33}
can be on the blackboard. Prime numbers 17, 19, 23, 29 a 31 are going to stay on
the blackboard, in one copy each, because they have no other divisor than the num-
ber 1 and the set M does not contain any other of their multiples.
We explain now, why there must always be two other numbers on the blackboard.

the product of all numbers is

S = 33! = 231 · 315 · 57 · 74 · 113 · 132 · 17 · 19 · 23 · 29 · 31 (1)

at the beginning.
In each step we choose a pair (x, y) with x | y, that is numbers of the form

x = a, y = ka and we replace them with the number y/x = k. the product S of
all the numbers on the blackboard changes to the new value S/a2. It is evident,
that the parity of the exponent of each prime number divisor in the prime number
factorization of S is preserved. Especially the four primes 2, 3, 5, and 11 divide
the product S throughout the process. Since 2 · 3 · 5 · 11 > 33 it follows that on the
table there always must be at least two numbers which product is divisible by 2·3·5·11.
On the whole, there must always be at least seven numbers on the blackboard.
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The sequence of steps

32, 16 → 2, 30, 15 → 2, 28, 14 → 2, 26, 13 → 2, 24, 12 → 2, 22, 11 → 2,

27, 9 → 3, 21, 7 → 3, 18, 6 → 3, 25, 5 → 5, 20, 4 → 5, 8, 2 → 4,

5, 5 → 1, 4, 2 → 2, 3, 3 → 1, 3, 3 → 1, 2, 2 → 1, 2, 2 → 1, 2, 2 → 1.

leaves numbers 17, 19, 23, 29, 31, 10, 33, and seven numbers 1 on the blackboard.
The 1s can be eliminated in seven further steps, which leaves just seven numbers on
the blackboard.

Conclusion: the least amount of numbers which can be left on the blackboard is
seven.

4. In an acute-angled triangle with pairwaise different sides let O, V , and S be
the circumcenter, the orthocentre, and the incenter respectively. Prove that
the perpendicular bisector of the segment OV meets S if and only if one of the in-
ner angles of the triangle ABC is 60◦.

Solution. First, we show that in any acute-angled triangle ABC holds

γ = 60◦ ⇐⇒ |CO| = |CV |, (1)

where γ is the angle by C. Let us consider triangles CVA0 and COB1, where A0 is
the foot of the altitute through A, and B1 is the center of AC (see Fig. 2). From the
triangle ACA0 we get

γ = 60◦ ⇐⇒ |CA0| =
|AC|

2
⇐⇒ |CA0| = |CB1|.

The last equality is between the legs of two right triangles with the equal angles
V CA0 and OCB1 with the value 90◦ − β (to see this for the angle V CA0 look at
the right triangle BCC0; as for the angle OCB1, observe that B10C is the half of
the central angle corresponding to the circumferential angle ABC = β in the cir-
cumcircle of ABC). Thus the equality of the legs CA0 and CB1 is equivalent to
the equality of the hypotenuses CO and CV , which proves (1).

A B

C

B1

A0

C0

V
O

β

β

Fig. 2

The angles V CA0 and OCB1 are equal, hence CS (recall that S is the incenter)
is in any acute-angled triangle ABC not only the bisector of the angle ACB but
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the bisector of the angle OCV as well. If γ = 60◦ then |CO| = |CV | and the line CS
is a perpendicular bisector of the base OV of the equilateral triangle OV C (the points
O and V are two different points, since ABC has different sides), in other words
the perpendicular bisector of OV meets S. The same is true if α = 60◦ or β = 60◦.
On the contrary, suppose that the perpendicular bisector of OV meets S and none

of the inner angles is 60◦. According (1), |AO| 6= |AV |, |BO| 6= |BV |, and |CO| 6=
|CV |. Consider the triangle OV C again, the bisector CS of the inner angle OCV is
different from the perpendicular bisector of the base OV , that is its intersection S lies
on the circumcircle of OCV according to the well known fact. Equivalently, C lies on
the circumcircle of OV S. But the same arguments put points A and B on the circle
as well, which means the circumcircle of ABC passes through its center O, which is
impossible. This completes the proof.

5. They were n fishermen and they caught r0 fishes together and put them in the fish
tank. They come one by one to take their part of the catch. Everyone thinks he
is the first one at the tank and after letting one fish free he takes exactly 1/n
of the current number of fishes in the tank. Determine the smallest possible r0

(depending on n > 2) if everyone takes home at least one fish.

Solution. Let us denote rk the number of fishes in the tank after the k-th fisherman
took his fishes, k = 1, 2, . . . , n.
These numbers are determined by r0 and the reccurence formula

rk+1 =
n − 1

n
(rk − 1) (k = 0, 1, . . . , n − 1).

For convenience, we rewrite the formulas as

rk+1 = q · rk + d, kde q =
n − 1

n
a d =

1 − n

n
. (1)

First, we derive the explicit expression of the sequence given by the linear re-
currence formula rk+1 = q · rk + d (q, d = const.). For q = 1 it is just an arithmetic
progression, for q 6= 1 we have

r1 = qr0 + d,

r2 = qr1 + d = q(qr0 + d) + d = q2r0 + (q + 1)d,

r3 = qr2 + d = q(q2r0 + (q + 1)d) + d = q3r0 + (q2 + q + 1)d,

r4 = qr3 + d = q(q3r0 + (q2 + q + 1)d) + d = q4r0 + (q3 + q2 + q + 1)d,

...

and we get the expression

rk = qkr0 + (qk−1 + qk−2 + · · · + q + 1)d = qk

(

r0 +
d

q − 1

)

− d

q − 1
.

Thus

rk = qkr0 +
(qk − 1)d

q − 1
= qk

(

r0 +
d

q − 1

)

− d

q − 1
.
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In our case
d

q − 1
=

(1 − n)/n

(n − 1)/n − 1
= n − 1,

and

rk =
(n − 1)k(r0 + n − 1)

nk
− n + 1 (k = 0, 1, 2 . . . , n).

Since the numbers (n− 1)k and nk are relatively prime, the values rk are integer
if and only if the number r0 + n − 1 is divisible by nk, for all k = 0, 1, 2, . . . , n, that
is by nn. Hence there exists an integer j such that r0 + n − 1 = j · nn, which is
r0 = j · nn − n + 1, and we can express rk as

rk = j · (n − 1)k · nn−k − n + 1 (k = 0, 1, 2 . . . , n). (2)

Now we are searching for the least integer j > 1 such that all rk are positive. Since
these numbers form a decreasing sequence, the smallest one is rn = j ·(n−1)n−n+1,
which is for n > 3 positive already for j = 1 (r0 = nn−n+1), while for n = 2 the least
j is equal to 2 (r0 = 2 · 22 − 1 = 7).

Conclusion: The least possible r0 is 7 for n = 2 and r0 = nn − n + 1 for n > 3.

6. For a given prime p, determine the number of tuples (a, b, c), consisting of num-
bers from the set {1, 2, 3, . . . , 2p2}, which satisfy

[a, c] + [b, c]

a + b
=

p2 + 1

p2 + 2
· c,

where [x, y] denotes the least common multiple of x and y.

Solution. Let us transform the equation using the well-known relation (x, y) · [x, y] =
x · y, where (x, y) is the greatest common divisor of x and y. If we denote u = (a, c),
and v = (b, c) then the LHS reads

[a, c] + [b, c]

a + b
=

ac/u + bc/v

a + b
=

(a

u
+

b

v

)

· c

a + b
.

Thus the original equation is equivalent to (after the multiplication with (a+b)/c)

a

u
+

b

v
=

p2 + 1

p2 + 2
· (a + b). (1)

Since p2 > 0 we have the following estimates for the RHS

1

2
<

p2 + 1

p2 + 2
< 1,

consequently
a + b

2
<

a

u
+

b

v
< a + b. (2)
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The left inequality implies u and v cannot both be greater than 1, as inequalities
u > 2 and v > 2 imply

a

u
+

b

v
6

a + b

2
.

On the other hand, the right inequality excludes u = v = 1, thus exactly one of
u and v is 1. Due to symmetry it is sufficient to deal with u = 1 and v > 2.
Since v = (b, c), we have b/v = b1, with positive integer b1. We substitute u = 1

and b = b1v into (1) and solve it with respect to a:

a + b1 =
p2 + 1

p2 + 2
· (a + b1v),

(p2 + 2)(a + b1) = (p2 + 1)(a + b1v),

a = b1((p
2 + 1)v − p2 − 2). (3)

If v > 3 then from the last equation

a > (p2 + 1)v − p2 − 2 > 3(p2 + 1) − p2 − 2 = 2p2 + 1,

which is a contradiction, as a ∈ {1, 2, 3, . . . , 2p2}.
Hence we have v = 2 and (3) becomes

a = b1(2(p2 + 1) − p2 − 2) = p2b1,

which is easy to solve with a in the given domain. Since a 6 2p2 we have b1 6 2 and
since u = (a, c) = 1 and v = (b, c) = 2 we have c is even and relatively prime with
a. Further a = p2b1 implies b1 = 1 and p is an odd prime. Hence a = p2b1 = p2

and b = b1v = 1 · 2 = 2, which means c is even and not a multiple of p. There
are p2 − p such numbers in {1, 2, 3, . . . , 2p2} and the tuples (a, b, c) = (p2, 2, c) are
the solutions of the given equation. Because of the symmetry there is the same
number of the solutions of the form (a, b, c) = (p2, 2, c).

Conclusion: There are no tuples if p = 2. If p is an odd prime, there are 2(p2−p)
tuples.

6



First Round of the 59th Czech and Slovak

Mathematical Olympiad

(December 1st, 2009)

MO
1. Find all real solutions of the system

√

x − y2 = z − 1,
√

y − z2 = x − 1,
√

z − x2 = y − 1.

Solution. The square roots and their arguments have to be positive, therefore
x, y, z > 1, x > y2, y > z2, and z > x2. The last three inequalities imply x >

y2 > y > z2 > z > x2, and since x > 1, the inequality x > x2 forces x = 1, and all the
values in the given chain of inequalities are equal, especially x = y = z = 1, which is
indeed a solution.

Conclusion. There is a unique solution x = y = z = 1.

2. Find all possible values of the quotient
r + ρ

a + b
,

where r and ρ are respectively the radii of the circumcircle and incircle of the
right triangle with legs a and b.

Solution. The distances between the vertices and points of tangency of the incircle
(denoted according to the figure) of a triangle ABC are

|AU | = |AV | =
b + c − a

2
, |BV | = |BT | =

a + c − b

2
, |CT | = |CU | =

a + b − c

2
,

which is easy to obtain from

|AV | + |BV | = c, |AU | + |CU | = b, |BT | + |CT | = a.

A

B

C

ST

U

V

Fig. 1
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The points C, T , U , and S (the center of the incircle) form a deltoid, actually a
square, if the angle ACB is right. The side of the square is ρ = |SU | = |CU |. This
gives

ρ =
a + b − c

2
;

moreover according to the Thales theorem r = 1

2
c and we get

r + ρ =
c

2
+

a + b − c

2
=

a + b

2
.

Conclusion. There is only one possible value of the quotient (r + ρ)/(a + b) in
any right triangle, namely 1

2
.

3. There are numbers 1, 2, . . . , 33 written on the blackboard. In one step we choose
a group of numbers on the blackboard (at least two) such that their product is
a square, we erase them and write the square root of their product instead. We
proceed until no group can be chosen. What is the least amount of numbers left
on the blackboard?

Solution. The product of all the numbers written on the blackboard is

S = 231 · 315 · 57 · 74 · 113 · 132 · 17 · 19 · 23 · 29 · 31.

Apparently, the numbers 17, 19, 23, 29, and 31 can never be erased and can never
be a part of any change. In any step, there is always left at least one other number,
which gives in total 5+1 = 6 numbers. Six numbers on the blackboard are achievable
indeed: because of the odd exponents of primes 2, 3, 5, and 11 in S we allocate the
set A = {2, 9, 11, 22, 25} and we put all the other numbers with exception of 17, 19,
23, 29 a 31 into set

B = {3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 21, 24, 26, 27, 28, 30, 32, 33}.

In the first step we choose the group A and replace it by the number

n =
√

2 · 9 · 11 · 22 · 25 =
√

22 · 32 · 52 · 112 = 2 · 3 · 5 · 11.

Because the product of all the numbers from B is 231−2 · 315−2 · 57−2 · 74 · 113−2 ·
132 = 229 · 313 · 55 · 74 · 11 · 132, in the second step we choose n together with all the
numbers from B and replace it by

√

(2 · 3 · 5 · 11) · (229 · 313 · 55 · 74 · 11 · 132) = 215 · 37 · 53 · 72 · 11 · 13,

which leaves just six numbers on the blackboard.
Conclusion. The sought least amount is six.

8



Second Round of the 59th Czech and Slovak

Mathematical Olympiad

(January 20th, 2010)

MO
1. Prove that the equation x2 + p|x| = qx− 1 with real parameters p, q has four real
solutions if and only if p + |q| + 2 < 0.

Solution. Evidently, 0 is not a solution of the equation for any p, q. Thus the
solutions of the equation are the positive solutions of

x2 + px = qx − 1 i.e. x2 + (p − q)x + 1 = 0, (1)

together with the negative solutions of

x2 − px = qx − 1 i.e. x2 − (p + q)x + 1 = 0. (2)

Since any quadratic equation has at most two solutions, the original equation has four
solutions if and only if the equation (1) has two positive roots and the equation (2)
has two negative roots. Now we find out, when this happens.

First, both of the discriminants (p− q)2 − 4 and (p + q)2 − 4 of the equations (1)
and (2) have to be positive, that is

(p − q)2 > 4 and (p + q)2 > 4. (3)

Further the smaller root of the equation (1) has to be positive and the bigger root of
(2) has to be negative, that is

q − p −
√

(p − q)2 − 4

2
> 0 and

p + q +
√

(p + q)2 − 4

2
< 0. (4)

We rewrite the first inequality:

q − p >
√

(p − q)2 − 4, (5)

and we get q − p > 0, which together with (3) means q − p > 2. Then the inequality
(5) is satisfied as well, because

q − p =
√

(p − q)2 >
√

(p − q)2 − 4.

Thus we have proved that (1) has two different positive solutions if and only if
q − p > 2, which is the first condition in

p − q + 2 < 0, p + q + 2 < 0. (6)
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Analogously we rewrite the second condition in (4) as
√

(p + q)2 − 4 < −(p + q) (which implies p + q < 0)

which for negative p + q gives p + q < −2, The inequalities (6) are thus equivalent to
the statement in question.
But is is easy to verify

(p − q + 2 < 0 ∧ p + q + 2 < 0) ⇔ p + |q| + 2 < 0.

Since |q| = max{−q, q} implies
p + |q| + 2 = max{p − q + 2, p + q + 2},

and the maximum of two real numbers is negative if and only if both of them are
negative.

2. Let ABCD be a parallelogram with the obtuse angle ABC. We choose a point
P on the diagonal AC and in the halfplane BDC such that | 6 BPD| = | 6 ABC|.
Prove that the line CD is tangent to the circumcircle of the triangle BCP , if and
only if AB = BD.

Solution. The line BD separates points A and P , and

| 6 BAD| + | 6 BPD| = | 6 BAD| + | 6 ABC| = 180◦,

which shows that the quadrangle ABPD is cyclic (Fig. 1), thus

| 6 DBP | = | 6 DAP | = | 6 DAC| = | 6 ACB| = | 6 BCP |.

A
B

CD

P

k

Fig. 1

Since the line BP separates the points C and D, we can use the tangent-chord
theorem for the circumcircle k of the triangle BCP to conclude that BD is tangent
to k (with the touch point in B). The proof of the problem is easy now:
(i) If the line CD is tangent to k, the symmetry of CD and BD implies |CD| =

|BD|, that is |AB| = |BD|.
(ii) In the opposite direction, if |AB| = |BD|, that is |CD| = |BD|, the point

D lies on the perpendicular axis of the chord BC of the circle k, and CD and BC
are symmetric with respect to this axis. Then not only BD is tangent to k but its
symmetry image CD as well.
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3. Find all positive integers m, n, such that n divides 2m− 1 and m divides 2n− 1.

Solution. We seek the pairs of positive integers m, n, such that

2m − 1 = kn a 2n − 1 = lm. (1)

for some positive integers k, l.
Considering k, l as parameters, we can eliminate the variable n, or we can elim-

inate the variable m to get:

(4 − kl)m = k + 2, or (4 − kl)n = l + 2; (2)

Since the RHS of both equation is positive, the LHS must be positive as well and we
get 4 − kl > 0, which is kl < 4. We go through cases kl = 1, kl = 2 a kl = 3 one by
one.

If kl = 1, then k = l = 1 and the equations (2) read 3m = 3 and 3n = 3, which
is m = n = 1.

Since m and n have to be odd, it cannot be kl = 2.
If kl = 3 then {k, l} = {1, 3}, and we get m = 5 and n = 3, or m = 3 and n = 5.

Conclusion. The solution are pairs (1, 1), (3, 5), and (5, 3).

4. In a triangle ABC, let O be the incenter, P the excenter opposite A, and D the
intersection of the bisector of the angle A and the side BC.
Prove

2

|AD| =
1

|AO| +
1

|AP | .

Solution. We will use the known formulas

ρ =
2S

a + b + c
and ρa =

2S

b + c − a
.

for the sides a, b, and c, ρ the incircle radius, ρa the radius of the excircle opposite
A, and S, the area of ABC.

Since O and P lie on the axis of the angle A, ρ and ρa are legs of the right
triangles with hypotenuses AO and AP respectively, opposite the angle 1

2
α (Fig. 2),

thus ρ = |AO| sin 1

2
α, and ρa = |AP | sin 1

2
α. We can now express the right hand side

of the given equality as

1

|AO| +
1

|AP | =
sin 1

2
α

ρ
+

sin 1

2
α

ρa

=

=

(

(a + b + c) + (b + c − a)
)

sin 1

2
α

2S
=

(b + c) sin 1

2
α

S
.
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ρ

ρa

1

2
α

Fig. 2

On the other hand, the area S is the sum of the areas of ABD and ACD, and
we can calculate these using the lengths of their sides from A and the angle by A,
which is in both triangles 1

2
α.

S = SABD + SACD =
c|AD| sin 1

2
α

2
+

b|AD| sin 1

2
α

2
=

(b + c)|AD| sin 1

2
α

2
.

And we get
2

|AD| =
(b + c) sin 1

2
α

S
.

Thus the LHS and the RHS have the same value which finishes the proof.
Let us remark that using S = 1

2
bc sin α = bc sin 1

2
α cos 1

2
α we can extend the

equality in question as

2

|AD| =
1

|AO| +
1

|AP | =
b + c

bc cos 1

2
α

.
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Final Round of the 59th Czech and Slovak

Mathematical Olympiad

(March 22–23, 2010)

MO
1. Find all positive integers a a b, such that

4a + 4a2 + 4 = b2.

Solution. The equation implies, that b2 is even and greater than 4a, which means
that b is even and greater than 2a, that is b > 2a + 2, and

4a + 4a2 + 4 = b2
> (2a + 2)2 = 4a + 4 · 2a + 4.

which gives a2 > 2a, and consequently a 6 4.
Substituting the possible values a = 1, 2, 3, 4 to the original equation we find out

solutions (a, b) = (2, 6) and (a, b) = (4, 18).

2. Nineteen shots hit the circular target with the radius 12 cm. Prove, that there are
two hits separated by a distance smaller than 7 cm.

Solution. Let r = 4
√

3 cm and we divide the whole target (of radius r
√

3) into 18
disjoint parts. The first six parts are circular sectors with central angle 60◦, which
together form the circle of radius r in the center of the target. Then we divide the
remaining annulus into twelve equal annular sectors with central angle 30◦ (Fig. 1).

A

B

C

S
r r

Fig. 1

According to the picture, let us denote as S the center of the target, and A, B,
C the vertices of the annular segments.

13



Since the circles bordering the annular segments have radii r and r
√

3, and since
cos 30◦ = 1

2

√
3, the triangle SAC is isosceles, and thus |AC| = r; moreover AC is the

longest side in the triangle ABC, which has inner angles 45◦, 75◦, and 60◦. That’s
why the maximal distance of two points lying in the same annular sector is r, which
is the maximal distance of two points in one of the six sectors of the radii r as well.
The pigeonhole principle gives us, that there are two hits in the same part, that is
their distance is at most r = 4

√
3 < 7.

Remark. Let us consider the statement: From N points inside the circle of radius

r
√

3, some two of them are separated by a distance at most r.
If we want to prove such a statement by comparing the sum of areas of N equal

circles of radius r with the area of the circle of radius r
(

1 + 2
√

3
)

, we succeed, if and
only if

N · πr2

4
>

πr2
(

1 + 2
√

3
)2

4
or N > 13 + 4

√
3

.
= 19,9.

In the given problem, there is even stronger estimate of the distance of two points,

namely r1 = r · 7

4
√

3
, and the similar condition gives

N · πr2
1

4
>

π
(

r1 + 2r
√

3
)2

4
, after substitution N >

(

1 +
24

7

)2 .
= 19,6.

That is we cannot prove the given problem with this “naive” approach.

3. A wizard kidnapped 31 members of the political party A, 28 members of the party
B, 23 members of the party C, and 19 members of the party D and kept them
separately in single cells on his castle and made them to do some work. Each day
after the work the party members could walk on the courtyard and talk to each
other. But when three members of different parties started to talk to each other,
the wizard re-registered them into the fourth party. (More than 3 kidnapped party
members never talked to each other)
a) Is it possible, that after some time all the kidnapped people were members
of one political party? Which one?

b) Find all the quadruples of positive integers with the sum 101 which admit,
considered as numbers of kidnapped party members, that after some time
they become, with the “help” of the wizard, the members of a single party.

Solution. a) Let a, b, c, and d be the numbers of the kidnapped members of parties
A, B, C, and D. The initial quadruple (a, b, c, d) = (31, 28, 23, 19) is according to
the parity of the numbers of type (o, e, o, o), where o stands for odd, and e for an
even integer. Since the parity of all the numbers a, b, c, and d changes in any re-
registration, the quadruple of type (o, e, o, o) becomes the quadruple of type (e, o, e, e),
this one then again changes the type to (o, e, o, o) and so forth. If we get after some
time the quadruple consisting of 101 and three zeros, the quadruple has to be of type
(e, o, e, e), that is all the kidnapped will be the members of the party B, and the
following table of changes shows, that this is really possible:

a : 31 30 29 28 27 26 25 24 23 22 . . . 0
b : 28 27 26 25 24 23 26 29 32 35 . . . 101
c : 23 22 25 24 27 26 25 24 23 22 . . . 0
d : 19 22 21 24 23 26 25 24 23 22 . . . 0
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b) We show, that the sought quadruples (a, b, c, d) are those, which contain three
numbers which are the same modulo 4.

The equality a + b + c + d = 101 implies that three of a, b, c, d have the same
parity and the fourth one the opposite one. Because of the symmetry we can suppose
that we have

a ≡ b ≡ c 6≡ d (mod 2)

for the original quadruple. In any re-registration three of the numbers a, b, c, and d
increase by 3, and the fourth one decreases by 1, that is the differences a − b, a − c,
b− c remain the same modulo 4. If in the end a = b = c = 0, than the said differences
have to be divisible by 4 already at the beginning, that is

a ≡ b ≡ c (mod 4). (1)

for the original a, b, and c.
Let us show that this condition is sufficient as well. Obviously it is enough to

show, that the original quadruple (a, b, c, d) satisfying the condition (1) can be after
some steps (re-registrations) changed to the quadruple of the form (e, e, e, f). Namely,
after that it suffices to repeat the step (e, e, e, f) → (e − 1, e − 1, e − 1, f + 3).

Now, let (a, b, c, d) be a quadruple with the sum 101, which fulfills the condition
(1), and let us further suppose that a = b = c does not hold true. We show, which
steps to use to increase the value of d (by 1 or 2). Since d 6 101 always, those steps
can be applied only finitely many times until a = b = c.

It is sufficient to describe the steps in case a > b > c and a > c, which is a−c > 4
because of (1).1 Two changes

(a, b, c, d) → (a − 1, b − 1, c + 3, d − 1) → (a − 2, b − 2, c + 2, d + 2),

enlarge d by 2. These two steps cannot be taken only if b = 1, but then (1) and b > c
imply c = 1. A quadruple (a, 1, 1, d), where a > 5 and d > 2 (it cannot be d = 1,
because of the parity reason) can be transformed by the following three steps:

(a, 1, 1, d) → (a − 1, 4, 0, d− 1) → (a − 2, 3, 3, d− 2) → (a − 3, 2, 2, d + 1),

which increase d by 1.
This finishes the proof of the statement about satisfactory quadruples.

4. We are given a circle k with a chord AC, which is not a diameter. On its tangent
through A we choose a point X 6= A and let D be the intersection point of k with
the interior of the segment XC (if it exists). We complete the triangle ACD into
the trapezoid ABCD inscribed into k. Determine the set of intersection points
of lines BC and AD of such trapezoids.

Solution. Let us further consider only such trapezoids ABCD, where AB ‖ CD
(there is no intersection of lines BC and AD if BC ‖ AD).

1 Let us point out that we do not exclude c = 0. This is vital, because we end up with such a

quadruple if the wizard uses two steps described further for b = 2.
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Let O be a center of circle k, E the intersection of its tangents through A and
C (Fig. 2). According to Thales, A and C lie on the circle τ with the diameter OE,
moreover they are symmetric with respect to that diameter. We denote by φ the
angles by A and C in the triangle ACE, and further let k1 and k2 be the interiors of
longer and shorter arc AC of the circle k respectively.

A

B

C

D

E

X

Y

O

k1

k2

τ

φ
φ

Fig. 2

A

B

C

D

E

X

Y

O

k1

k2

τ

φ φ

Fig. 3

a) Let X be any point on the tangent AE, X 6= A. The circle k meets the
segment XC in an inner point D, if and only if X lies in the interior of AE, or in the
interior of the half-line opposite to the half-line AE. We deal with these cases (Fig. 2
and Fig. 3) separately.
In the first case D ∈ k1 and B ∈ k2, and φ and acute angle ABC are the

same (ABC is inscribed angle into k2 subtending the arc AC, φ is the tangent-chord
angle corresponding to the chord AC). Moreover the angle BAD is the same as well,
because every inscribed trapezoid is isosceles. Thus Y , the intersection of half-lines
BC and AD, lies in the half-plane ACE. Triangles ABY and ACE are isosceles,
thus the angles AY C and AEC are the same (π − 2φ), and Y is on the arc AEC of
τ . More precisely, Y is inside the the shorter arc CE, because AD lies in the angle
CAE.
The second case is analogous, we write it down briefly: D ∈ k2, B ∈ k1,

| 6 ADC| = φ = | 6 BCD|, the intersection Y of the half-lines CB and DA lies in
the half-plane ACE, and since | 6 AY C| = | 6 AEC|, Y lies on τ , inside the shorter
arc AE.
b) Now we show, that any point Y inside the shorter arcs CE and AE of τ is

the intersection of BC and AD of some of the thought trapezoids ABCD. As before,
there are two cases.
If Y lies inside the arc CE, obviously there are points D ∈ k1 and B ∈ k2 such

that A, D, and Y lie on a line respectively, as well as B, C, and Y . Now D ∈ k1
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and therefore there is an intersection X of the half-line CD with the interior of the
segment AE (D corresponds to X according to the construction from the statement
of the problem). Now we explain why AB ‖ CD. Since O and Y lie on different arcs
AC of τ and |AO| = |CO|, the half-line Y O is the bisector of the angle AY C, and
A(D)Y a B(C)Y are symmetric along the line Y O, which is a line of symmetry of
the circle k, because it goes through its center. Thats why the intersections of lines
A(D)Y a B(C)Y with k, have to be symmetric along Y O as well, that is A and B,
and further D and C are symmetric. Thus AB and CD are perpendicular to Y O,
and consequently parallel.

If Y is inside the arc AE, we construct D ∈ k2 and B ∈ k1 in such a way, to
have D, A, and Y on a line respectively, and C, B, and Y on a line respectively
as well. The half-line CD meets the half-line AE in the desired point X (since
D 6= A, we have X 6= A), if | 6 AEC| + | 6 ECD| < π. This is really the case. Since
| 6 ECD| = π − | 6 CAD| = | 6 CAY | according to the inscribed angle theorem, and
since | 6 AEC| = | 6 AY C|, the sum | 6 AEC| + | 6 ECD| is equal to the sum of two
inner angles of the triangle ACY . Further D(A)Y and C(B)Y are symmetric along
OY , the bisector of AY C, and we have AB ‖ CD again.

Conclusion. The set in question is the union of interiors of shorter arcs CE and
AE of the circle τ .

5. There are numbers 1, 2, . . . , 33 written on a blackboard. In one step we choose
two numbers on the blackboard such that their product is a square, we erase
the two numbers and write their square root instead. We proceed in this manner
until no product of any two numbers on the blackboard is a square. Prove, that
there are at least 16 numbers left on the blackboard.

Solution. In one step we replace numbers a and b with one positive integer
√

ab.
Since a 6 b gives a 6

√
ab 6 b, it is obvious that only numbers from the set M =

{1, 2, . . . , 33} can be on the table. If a is prime or a product of different primes, those
primes have to be present in the prime factorization of

√
ab, which is

√
ab = ka and

b = k2a for some positive integer k. If k = 1, there must be multiple occurrence of a
on the table. If k > 2, that is b = k2a > 4a, we have 4a 6 33, and 4a ∈ M . Summing
up, on the table there are always numbers which divide exactly one number from M ,
and also those a ∈ M , which are the product of different primes and satisfy 4a > 33
which is a > 9. Thus we have showed, there are 15 numbers, which have to be on the
blackboard:

10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33.

We show, that beside them there is always at least one more number from the set
S = {6, 12, 18, 24} there (there are all of them there at the beginning). If we choose a

and b in one step, where a ∈ S, and replace them with n =
√

ab, then n is a multiple
of 6, and since a 6 24 and b 6 33 we have n 6

√
24 · 33 = 6

√
22 < 30, that is n ∈ S.

All together there are always 15 numbers (mentioned above) on the blackboard and
one number from S, which finishes the prove.

Remark. Those 16 numbers are really achievable, for example with the following
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17 steps (the erased numbers are grey, the new one is at the end of the next line):

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33;

1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,14;

1,2,3,4,5,6,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,14;

1,2,3,4,6,8,9,10,11,12,13,15,16,17,18,19,21,22,23,24,25,26,27,29,30,31,32,33,14,10;

1,2,3,6,8,9,10,11,12,13,15,16,17,18,19,21,22,23,24,26,27,29,30,31,32,33,14,10,10;

1,2,3,6,8,9,11,12,13,15,16,17,18,19,21,22,23,24,26,27,29,30,31,32,33,14,10,10;

1,2,3,6,8,9,11,12,13,15,16,17,18,19,21,22,23,24,26,27,29,30,31,32,33,14,10;

1,2,3,6,8,9,11,13,15,16,17,18,19,21,22,23,24,26,29,30,31,32,33,14,10,18;

1,2,3,8,9,11,13,15,16,17,18,19,21,22,23,26,29,30,31,32,33,14,10,18,12;

1,2,3,8,9,11,13,15,16,17,19,21,22,23,26,29,30,31,32,33,14,10,12,18;

1,3,8,9,11,13,15,16,17,19,21,22,23,26,29,30,31,32,33,14,10,12,6;

1,3,9,11,13,15,16,17,19,21,22,23,26,29,30,31,33,14,10,12,6,16;

1,3,9,11,13,15,17,19,21,22,23,26,29,30,31,33,14,10,12,6,16;

3,9,11,13,15,17,19,21,22,23,26,29,30,31,33,14,10,12,6,4;

9,11,13,15,17,19,21,22,23,26,29,30,31,33,14,10,6,4,6;

11,13,15,17,19,21,22,23,26,29,30,31,33,14,10,6,6,6;

11,13,15,17,19,21,22,23,26,29,30,31,33,14,10,6,6;

11,13,15,17,19,21,22,23,26,29,30,31,33,14,10,6.

6. Find the minimum value of

a + b + c

2
− [a, b] + [b, c] + [c, a]

a + b + c
,

where a, b, c are integers grater than 1 and [x, y] denotes the least common
multiple of x and y.

Solution. Because of the symmetry it suffices to work with (a, b, c), where a > b > c.
For the “least” of them, that is for (2, 2, 2), (3, 2, 2), (3, 3, 2), (3, 3, 3), and (4, 2, 2) the
expression in question has values 2, 3/2, 17/8, 7/2, and 11/4 respectively.
We show that 3/2 is the minimal value, namely we show that (a, b, c), which

satisfy a + b + c > 9, also fulfill

a + b + c

2
− [a, b] + [b, c] + [c, a]

a + b + c
>

3

2
,

We change the inequality equivalently:

(a + b + c)2 − 2([a, b] + [b, c] + [c, a]) > 3(a + b + c),

a2 + b2 + c2 + 2(ab − [a, b]) + 2(bc − [b, c]) + 2(ca − [c, a]) > 3(a + b + c).

Since xy > [x, y] for any x, y, we neglect the non-negative multiples on the left hand
side and we prove the (stronger) inequality

a2 + b2 + c2
> 3(a + b + c). (1)
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The assumption a+b+c > 9 and Cauchy inequality 3(a2 +b2 +c2) > (a+b+c)2

gives

a2 + b2 + c2
>

(a + b + c)2

3
= 3(a + b + c) · a + b + c

9
> 3(a + b + c),

which concludes the prove.
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