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1. The four real solutions of the equation

ax4 + bx2 + a = 1

form an increasing arithmetic progression. One of the solutions is also a solution
of

bx2 + ax+ a = 1.

Find all possible values of real parameters a and b. (Peter Novotný)

Solution. According to the statement of the problem, the first equation has four
distinct solutions, that is a 6= 0.

Let x0 be the common solution of the equations. Then x0 solves the difference
of the equations as well, which gives ax4

0− ax0 = 0, or ax0(x3
0− 1) = 0. The common

solution thus has to be either 0 or 1.
Substituting x0 = 0 into the first equation gives a = 1, but the equation

x4 + bx2 = 0 has the solution 0 with the multiplicity at least two, thus it cannot
be x0 = 0.

The common solution therefore is x0 = 1. Substituting this into any of the
equations we obtain b = 1−a and we can rewrite the first equation as ax4−(1−2a)x2+
a− 1 = 0 and we can easily see, that −1 is a solution as well and we have

(x− 1)(x+ 1)(ax2 − a+ 1) = 0. (1)

The quadratic equation ax2 − (a − 1) should have two different real solutions,
mutually opposite numbers ξ and −ξ, which is the case for a > 1 or a < 0. If we choose
ξ > 0, then if 0 < ξ < 1, then the arithmetic progression should be −1, −ξ, ξ, 1, and
obviously ξ = 1

3 . Number 1
3 is a solution of (1) if and only if a = 1/(1 − ξ2) = 9

8 ,
consequently b = 1− 2a = − 5

4 .
If ξ > 1, then the arithmetic progression should be −ξ, −1, 1, ξ, which gives

ξ = 3. And 3 is a solution of (1), if and only if a = 1/(1 − 32) = − 1
8 , which gives

b = 1− 2a = 5
4 .

Conclusion. There are two pairs of solutions:

(a, b) ∈
{(
−1

8
,

5
4

)
,

(
9
8
,−5

4

)}
.
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2. Let k, n be positive integers. Adam thinks, that if k divides (n− 1)(n+ 1), then
k divides either n − 1, or n + 1. Find all k for which the Adam’s conclusion is
correct for any n. (Ján Mazák)

Solution. Let us begin with a
Lemma. Let r > 2 and s > 2 be relatively prime positive integers. Denote k = rs.
There exists nk such that

r | nk − 1 and s | nk + 1.

Proof. Consider s numbers

2, r + 2, 2r + 2, . . . , (s− 1)r + 2.

which are pairwise non-congruent modulo s, and thus they form the complete residue
set system modulo s. One of them, say lr+ 2, is therefore divisible by s. Then we let
nk be lr + 1.

The lemma shows that the sought ks cannot be written as a product of two
relatively prime numbers greater than 2. Namely if k = rs, r > 2, s > 2 relatively
prime, we choose n = nk and for this pair of numbers k and n is Adam wrong: then
k divides (n− 1)(n+ 1), but k does not divide n− 1 (since s divides n+ 1 and s > 2,
s does not divide n− 1, thus neither does k) and analogously k does not divide n+ 1.

Now any positive integer divisible by two odd primes can be written as a product
of two relatively prime numbers greater than 2. Thus the sought ks have to be one
of the following forms:

k = 2s, k = pt, k = 2pt,

where p is prime, s non-negative integer, and t positive integer.
If k = 2s, s is positive integer, then k = 1 and k = 2 obviously do not comply. But

k = 22 = 4 is a solution: if 4 divides (n−1)(n+1), then the factors are successive even
numbers and thus just one of them is divisible by 4. For s > 3 consider n = 2s−1 − 1
which proves Adam wrong.

Simple considerations show that k = pt and k = 2pt are solutions.
Conclusion. The solutions of the problem are

k = 4, k = pt, k = 2pt,

where p is odd prime and t positive integer.

3. Circles k and l meet at points A and B, a tangent touches the circles in K and
L in such a way, that B is inside the triangle AKL. Finally let us choose N
and M on k and l respectively in such a way, that A is inside MN . Prove, that
the quadrilateral KLMN is cyclic if and only if the line MN is tangent to the
circumcircle of AKL. (Jaroslav Švrček)

Solution. The tangent-chord theorem in k implies 6 KNA = 6 LKA and similarly
we get 6 V LM = 6 LAM in l, where V is a point on the half-line opposite to the
half-line LK (Fig. 1).
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The quadrilateral KLMN is cyclic if and only if 6 KNA = 6 V LM or 6 LKA =
6 LAM . According to the tangent-chord theorem this holds if and only if MN is
tangent to the circumcircle of AKL. The proof is finished.

4. There are 6n chips which differ only in color, three pieces of each of 2n colors.
For any integer n > 1 find the number pn of all partitions of these 6n chips into
two piles with 3n chips each, such that no three same colored chips are in the
same pile. Show, that pn is odd if and only if n = 2k for some positive integer k.

(Jaromír Šimša)

Solution. No three chips of the same color should be in the same pile means, that
there is at least one chip of any color in each of the two piles. Each described partition
is thus given by the distribution of 2n chips of each of 2n colors into two piles of n
chips. Together we have

pn =
1
2

(
2n
n

)
=

(2n)!
2(n!)2

=
2n · (2n− 1)!
2n · (n− 1)!n!

=
(

2n− 1
n

)
. (1)

Further we show that
(
2n−1

n

)
is odd if and only if n is a power of 2. This can be

actually easily seen from the Pascal triangle (modulo 2):

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 0 1
1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Recall, that the (combinatorial) numbers in the triangle are given by the (recur-
rence) formulas(

n

0

)
=
(
n

n

)
= 1 and

(
n

i

)
=
(
n− 1
i− 1

)
+
(
n− 1
i

)
(1 6 i 6 n− 1) (2)

and we can consider these formulas modulo any positive integer, we did modulo 2.
Notice that some of the rows (in the frame) contain only 1s. Let us call them

framed rows. Because of the formulas (2) there is a triangle consisting of zeroes with
1s on the edges. The places in the triangle corresponding to the numbers

(
2n−1

n

)
(circled ones) contain number 1 if and only if they lie in the framed row.

Let us prove this observation rigorously. First we prove by induction (over k):
The rows containing only number 1 are just the rows corresponding to the numbers(
n−1

i

)
(0 6 i 6 n− 1), where n is of the form n = 2k. It holds for k = 1 (n = 1, 2)

trivially. Let us assume that the statement is true for all n 6 2k. Denote by Pn the
first n = 2k rows of the scheme. Then the next n rows are formed by three equilateral
triangles: the first and the third one have exactly the same size and orientation as Pn,
the second one is “upside-down”, with n−1 rows, and because of the 1s in the base of
Pn and the formulas (2) it is formed only by zeros. This is also why the first and third
triangle have 1s not only in the top vertex but on the sides next to the second triangle.
But from the definition of the Pascal triangle, the first and the third triangles have
1s also on the outer sides. But then the recurrence formulas (2) guarantee, that the
first and the third triangles are the exactly the same as the triangle Pn. That means
that any row from n + 1 to 2n − 1 contains at least one zero (induction hypothesis)
and the row 2n contains only 1s (it consists of the bottom sides of the first and the
third triangle which are the same as the bottom side of Pn). The statement is true
for all n 6 2k+1.

Now it is enough to notice that pn =
(
2n−1

n

)
=
(
2n−1
n−1

)
lies always in the middle of

the even rows of the Pascal triangle, that is either in some gray triangle (see picture)
or in the line of 1s, which finishes the proof.

Another solution. Alternatively, to prove the second statement of the problem
about pn, we write

pn = 1 · 3 · . . . · (2n− 1) · 2 · 4 · . . . · (2n− 2)(2n)
2(n!)2

= 1 · 3 · . . . · (2n− 1) · 2nn!
2(n!)2

= 1 · 3 · . . . · (2n− 1) · 2n−1

n!
. (3)

The greatest integer a such that 2a divides n! is

a =
⌊n

2

⌋
+
⌊ n

22

⌋
+ · · ·+

⌊ n
2m

⌋
,

where 2m 6 n < 2m+1. Thus we have the estimate:

a 6
n

2
+
n

22
+ · · ·+ n

2m
= n

(
1− 1

2m

)
= n− n

2m
6 n− 1.

And from (3) follows that pn is odd if and only if a = n − 1, that is n is of the
form 2m.
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5. There are written six numbers on a cube, one on each face. In a move we choose
any two adjacent faces and we increase the numbers written on them by one.
Find the necessary and sufficient condition for the numbering of the cube, such
that after finite number of moves we can end up with the cube with the same
number on each of its faces. (Peter Novotný)

Solution. The sum of the numbers on the cube increases by 2 in each move. If we
end up with the cube with the same numbers, their sum is divisible by 6, in particular
it is even. The condition, that the sum of the numbers on the cube have to be even is
thus necessary and we will show, it is sufficient as well. Let us have a cube satisfying
the condition and denote its faces by S1, S2, . . . , S6, where S1 is opposite to S6, and
S2 opposite to S5.1 Let kij be the move increasing the numbers on faces Si and Sj .
We are rather interested in the difference between the numbers on the cube, than in
the absolute value of the numbers. Therefore we will work with the differences of
the numbers from the smallest number on the cube (which is a set of non-negative
integers containing 0).

The sequence k12, k23, k35, k54, k41 increases each number on the cube by 2,
except the number on S6, which is actually equivalent to decreasing the number on
S6 by two (in the speech of differences). Analogously we can decrease any number
on the cube and make all the numbers on the cube either 1 or 0 (but 0 has to be
present).

Now we deal with following cases (remember the sum of the numbers has to be
even):

a) There are only 0 on the faces. We are done.
b) There are exactly two 1s on the faces. Regardless of the fact, whether the 1s are

on the adjacent or opposite faces, we can always split the faces with zeros into
two pairs of adjacent faces and in two moves we even up all the numbers on the
cube.

c) There are exactly four 1s on the faces. We decrease each of the 0s by two (with
the sequence k12, k23, k35, k54) and we are in the situation of b).

Conclusion. We can even up all the numbers on the cube if and only if their sum
is even.

6. Prove
(a2 + b2) cos(α− β) 6 2ab,

in any triangle ABC with an acute angle at C. When does the equality hold?
(Jaromír Šimša)

Solution. If a = b, then the equality holds trivially. Since the inequality is symmetric
in a and b (cosine is an even function), we can assume a > b or α > β without loss of
generality.

Now since α > β, we can find D ∈ BC such that 6 CAD = β and 6 DAB = α−β.
(see Fig. 2). The triangleDAC is similar toABC with the coefficient of similarity b : a,
therefore |AD| = bc/a and |DC| = b2/a, it follows |BD| = |BC|−|DC| = (a2−b2)/a.

1 The faces of a dice are numbered similarly: the opposite faces sum up to 7.
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Fig. 2

We substitute these for |AD| and |BD| into the cosine formula for the triangle
ABD:

|BD|2 = |AB|2 + |AD|2 − 2|AB| · |AD| cos(α− β),
(a2 − b2)2

a2
= c2 +

b2c2

a2
− 2bc2 cos(α− β)

a
,

(a2 − b2)2 = δ · c2, where δ = a2 + b2 − 2ab cos(α− β) > 0. (1)

(The last inequality follows from the fact, that for α 6= β we have cos(α − β) < 1.)
Let ∆ be the difference of the right and left hand side of the given inequality. Then
using the relation (1) together with the equality c2 = a2 + b2 − 2ab cos γ we get

2ab∆ = 2ab
(
2ab− (a2 + b2) cos(α− β)

)
= 4a2b2 − (a2 + b2) · 2ab cos(α− β)

= 4a2b2 − (a2 + b2)(a2 + b2 − δ) = δ(a2 + b2)− (a2 − b2)2

= δ(a2 + b2)− δ · c2 = δ(a2 + b2 − c2) = δ · 2ab cos γ.

If we divide by 2ab we get ∆ = δ cos γ, and since δ > 0 and 0 < cos γ < 1 for
0 < γ < 90◦ (recall we assume a 6= b) we have ∆ > 0. Thus if γ < 90◦ and a 6= b we
have the strong inequality. The given inequality is proven and the equality holds if
and only if a = b.
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First Round of the 60th Czech and Slovak
Mathematical Olympiad
(December 7th, 2010)

MO
1. Find all real c such that the equation x2 + 5

2 x + c = 0 has two real solutions
which can be together with c arranged into a three-member arithmetic sequence.

(Pavel Calábek, Jaroslav Švrček)

Solution. Let c meets the criteria of the problem. Let us denote by d the difference
of the corresponding arithmetic sequence, and by x1, x2 the solutions of the equation.

a) If c is a middle term of the arithmetic sequence, then x1 = c−d and x2 = c+d.
Further Monsieur Viète says − 5

2 = x1 + x2 = 2c, that is c = − 5
4 . Moreover for

any negative c the equation has two real solutions (especially for c = − 5
4 we have

x1,2 = − 5
4 ±

3
4

√
5).

b) If c is the first or the last member of the sequence we have (in an appropriate
notation of the solutions of the equation) x1 = c + d, x2 = c + 2d. Thus we get
− 5

2 = x1 + x2 = 2c + 3d, which gives d = − 5
6 −

2
3c and substituting into x1 = c + d

and x2 = c + 2d we get x1 = 1
6 (2c − 5) and x2 = − 1

3 (c + 5). Monsieur helps again,
since x1x2 = c and we get 2c2 + 23c− 25 = 0, with solutions 1 and − 25

2 . (If c = 1 the
solutions are x1 = − 1

2 , x2 = −2; if c = − 25
2 the solutions are x1 = −5, x2 = 5

2 .)

Conclusion. The conditions of the problem are met for c ∈ {− 25
2 ;− 5

4 ; 1}.

2. Let P , Q, R are the points of the hypotenuse AB of the right triangle ABC,
with |AP | = |PQ| = |QR| = |RB| = 1

4 |AB|. Prove that the intersection M of
circumcircles of APC and of BRC (other than C) is the middle of CQ.

(Peter Novotný)

Solution. Let M ′ be the middle of CQ (see Fig. 1). Since PM ′ and RM ′ are the
midsegments of AQC and BQC (these are moreover isosceles with bases AC, resp.
BC, since Q is the circumcenter of ABC) the quadrilaterals CAPM ′ and CBRM ′ are
isosceles trapezoids and their circumcircles meet in C and M ′. But the circumcircles
are the circumcircles of APC and BRC as well and we are done.

A B

C

P Q R

M ′

Fig. 1
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3. Prove ∣∣∣∣pq − q

p

∣∣∣∣ > 4
√
pq

for any two distinct primes p, q greater than 2. (Jaromír Šimša)

Solution. Since p, q are different odd primes we have |p− q| > 2.
The left hand side of the equation reads as

LHS =
∣∣∣∣pq − q

p

∣∣∣∣ =
∣∣∣∣p2 − q2

pq

∣∣∣∣ =
|p− q| · (p+ q)

pq
>

2 (p+ q)
pq

.

To prove

LHS >
4
√
pq
,

it is sufficient to show p+ q > 2
√
pq, but this is trivial.
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Second Round of the 60th Czech and Slovak
Mathematical Olympiad
(January 18th, 2011)

MO
1. Consider 8-digit multiples of 4. Is there more of those which contain the digit 1

or those which do not? (Ján Mazák)

Solution. Let us compute the number of all 8-digit multiples of 4 first. There are 9
possibilities for the first digit of such a number, 10 possibilities for each of the next
5 digits, and such a number has to end with two digits being one of the: 00, 04,
08, 12, . . . , 96. All together u = 9 · 105 · 25 = 22 500 000 eight-digit multiples of 4.
Similarly there is v = 8 · 95 · 23 = 10 865 016 eight-digit multiples of 4, which do not
contain the digit 1.

Conclusion. Since u > 2v there is more of 8-digit multiples of 4 which contain
number 1 then those which do not.

Remark. It is not necessary to compute u and v to prove u > 2v:

u

v
=

9 · 105 · 25
8 · 95 · 23

=
9
8
·
(10

9

)5
· 25

23

Using binomial theorem we get:

(10
9

)5
=
(

1 +
1
9

)5
> 1 + 5 · 1

9
+ 10 · 1

92
=

136
81

=
8 · 17

92
,

thus
u

v
=

9
8
·
(10

9

)5
· 25

23
>

9
8
· 8 · 17

92
· 25

23
=

17 · 25
9 · 23

=
425
207

> 2.

2. We are given a triangle ABC with the area S. Let us further choose a point
U inside the triangle with vertices in the midpoints of the sides of ABC. Let
A′, B′, and C ′ respectively, be the inversions of A, B, and C with respect to U .
Prove that the area of AC ′BA′CB′ is 2S. (Pavel Leischner)

Solution. Let K, L, and M be the midpoints of AB, BC, and CA. The homothety
with center A and ratio 2 sends the triangle MKU to the triangle CBA′ (see Fig. 1),
consequently SCBA′ = 4 ·SMKU . Similarly SACB′ = 4 ·SKLU and SBAC′ = 4 ·SLMU .
Together we get

SCBA′ + SACB′ + SBAC′ = 4 · SKLM = S,

and the area of the hexagon AC ′BA′CB′ is 2S.
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A B

C

A′B′

C ′
K

L
M

U

Fig. 1

Another solution. If U is the center of mass, the statement obviously holds. Let
us suppose, that U moves inside T (the triangle with vertices in the midpoints of the
sides of ABC) on a line p parallel to BC. We show that the area of AC ′BA′CB′

stays the same. Namely A′, B′, and C ′ lie on the lines parallel to p and thus the area
of A′BC, BCB′C ′, and B′C ′A (which together form AC ′BA′CB′) stay the same.
Analogously the area stays the same if U moves on a line parallel to AC.

A B

C

A′B′

C ′

U=T

Fig. 2

A B

C

A′B′

C ′

U

p

Fig. 3

Any point U inside T is the image of the center of mass in the composition of
two appropriate displacements: one parallel to BC and one parallel to AC and we
are done.

3. Find all pairs (m,n) of positive integers such that (m + n)2 divides 4(mn + 1).
(Tomáš Jurík)

Solution. The problem is symmetric in (m,n) and we can wlog assume m > n.
If positive integer A = (m+n)2 divides positive integer B = 4(mn+ 1), we have

(m+ n)2 6 4(mn+ 1), or (m− n)2 6 4.

Thus 0 6 m− n 6 2 and we are left with one of the following:
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. m = n, then A = 4n2, B = 4n2 + 4, and A divides B if and only if 4n2 divides
4, that is n = 1, and (m,n) = (1, 1).

. m = n + 1, then A = 4n2 + 4n + 1, B = 4n2 + 4n + 4 = A + 3, and A divides
B if and only if 4n2 + 4n + 1 divides 3. But for positive integers n there is
4n2 + 4n+ 1 > 4 + 4 + 1 = 9, and thus we get no solution in this case.

. m = n + 2, then A = 4n2 + 8n + 4 = B, thus any pair (n + 2, n) of positive
integers is a solution.

Conclusion. The solutions are pair (1, 1) and any pair of the form (n + 2, n) or
(n, n+ 2), where n is a positive integer.

4. Let M be a set of six mutually different positive integers which sum up to 60.
We write these numbers on faces of a cube (on each face one). In a move we
choose three faces with a common vertex and we increase each number on these
faces by one. Find the number of all sets M , whose elements (numbers) can be
written on the faces of the cube in such a way that we can even up the numbers
on the faces in finitely many moves. (Peter Novotný)

Solution. Let us denote the faces of the cube by S1, S2, . . . , S6, where S1 is opposite
to S6, and S2 opposite to S5. Let ci be written on Si. Since any vertex of the cube
lies just in one of any pair of opposite faces, we increase by one the sums c1 + c6,
c2 + c5 a c3 + c4. Should at the end be c1 = c2 = c3 = c4 = c5 = c6, and so

c1 + c6 = c2 + c5 = c3 + c4, (1)

the sums of numbers on the opposite faces have to be the same already at the beginning
(and after each move).

We show that (1) is also a sufficient condition. Let the numbers on faces of the
cube satisfy (1). Let kijm be the move, in which we increase the numbers on Si, Sj ,
Sm. Wlog we may assume that c1 = p is the maximal number on the cube. We make
(p − c2) times move k246 and (p − c3) times move k356 after which the numbers on
faces S1, S2, S3 will be the same. Due to (1) the numbers on faces S4, S5, S6 are the
same as well, let us say q. If p > q we make (p− q) times move k456, if q > p we make
(q − p) times move k123 and we are done.

Now let us determine the number of six element sets M = {c1, c2, c3, c4, c5, c6}
of positive integers, such that

c1 + c2 + c3 + c4 + c5 + c6 = 60 and c1 + c6 = c2 + c5 = c3 + c4,

that is
c1 + c6 = c2 + c5 = c3 + c4 = 20. (2)

Wlog we may assume c1 < c2 < c3 (and consequently c4 < c5 < c6) and because of
(2) we have

c1 < c2 < c3 < 10 < c4 < c5 < c6.

Due to (2), each triple (c1, c2, c3) uniquely determines c4, c5, and c6. Thus the number
of sought sets is equal to the number of triples (c1, c2, c3) of positive integers satisfying
c1 < c2 < c3 < 10, which is (

9
3

)
=

9 · 8 · 7
1 · 2 · 3

= 84.
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Final Round of the 60th Czech and Slovak
Mathematical Olympiad
(March 28–29, 2011)

MO
1. Determine the angles of the triangles which satisfy the following property: There

exist K and M inside AB and AC respectively, such that circumcircles of the
quadrilaterals AKLM and KBCM are the same, where L is the intersection of
MB and KC. (Jaroslav Švrček)

Solution. The quadrilateral is cyclic iff 6 CMB = 6 CKB or 6 AKL = 6 AML (see
Fig. 1). The quadrilateral AKLM is cyclic iff 6 AKL + 6 AML = 180◦. In the
sought situation all four angles above have to be right, consequently K and M are
the foots of the altitudes in ABC. Thus ABC has to be acute, and L has to be its
orthocenter. The circumcircle of KBCM is the Thales’ circle over the diameter BC
and the circumcircle of AKLM is the Thales’ circle over the diameter AL.

A B

C

K

L

M

Fig. 1

These circumcircles are the same iff their diameters BC and AL are the same.
Let the angles in ABC be α, β, γ in a usual way. The right triangles CKB and AKL
are similar, namely the angles at C and at A are the same: 6 BAL = 6 BCK = 90◦−β.
That is why |BC| = |AL| iff |AK| = |CK|, that is AKC is right and isosceles.

All together, ABC fulfills the condition of the problem if and only if it is acute
with α = 45◦. For acute angles β and γ we have then β + γ = 135◦.

Conclusion. The solutions are the triples (α, β, γ) = (45◦, 45◦+φ, 90◦−φ), where
φ ∈ (0◦, 45◦).

2. Find all triples (p, q, r) of primes, which satisfy

(p+ 1)(q + 2)(r + 3) = 4pqr.

(Jaromír Šimša)
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Solution. The solutions are (2, 3, 5), (5, 3, 3) a (7, 5, 2).
First we rewrite a little bit the equation:(

1 +
1
p

)(
1 +

2
q

)(
1 +

3
r

)
= 4.

Since 33 < 4 ·23, at least one of the three factors on the RHS has to be greater than 3
2 .

That is p < 2 or q < 4 or r < 6. Thus we are left with the possibilities: q ∈ {2, 3} or
r ∈ {2, 3, 5}. We deal with these cases separately (we substitute the possible values
of q or r into the equation and solve it with respect to the other two primes).
. q = 2. We have (p + 1)(r + 3) = 2pr, thus r = 3 + 6/(p− 1), which is integer

just for the primes p ∈ {2, 3, 7}. But then the corresponding numbers r are in
{9, 6, 4}, which are not primes.

. q = 3. There is 5(p + 1)(r + 3) = 12pr, and p = 5 or r = 5. If p = 5 then we
obtain the solution (5, 3, 3), and if r = 5 we get the solution (2, 3, 5).

. r = 2. We have 5(p+ 1)(q + 2) = 8pq, thus p = 5 or q = 5. If p = 5, there is no
corresponding solution, while if q = 5 we get the third solution (7, 5, 2).

. r = 3. There is (p+ 1)(q+ 2) = 2pq, which implies q = 2 + 4/(p− 1), and this is
integer only for p ∈ {2, 3, 5}. The corresponding values of q are in {6, 4, 3} and
we get the solution (p, q, r) = (5, 3, 3), which we already know.

. r = 5. We have 2(p + 1)(q + 2) = 5pq, thus p = 2 or q = 2. If p = 2, then the
corresponding solution is (2, 3, 5) (already known), while there is no solution if
q = 2.

3. Let real x, y, z satisfy

x+ y + z = 12, x2 + y2 + z2 = 54.

Prove
a) Each of xy, yz, zx is at least 9, but at most 25.
b) Some of x, y, z is at most 3, and some at least 5. (Jaromír Šimša)

Solution. a) The two conditions imply (x+y)2 = (12− z)2 a x2 +y2 = 54− z2, thus

2xy = (x+ y)2 − (x2 + y2) = (12− z)2 − (54− z2) = 2
(
(z − 6)2 + 9

)
(1)

and

0 6 (x− y)2 = x2 + y2 − 2xy = 54− z2 − 2
(
(z − 6)2 + 9

)
= −3

(
(z − 4)2 − 4

)
. (2)

Then (1) implies xy = (z − 6)2 + 9 > 9, and from (2) we get (z − 4)2 6 4 or
2 6 z 6 6. That is why (z − 6)2 6 (2 − 6)2 = 16, and together with (1) we get
xy = (z − 6)2 + 9 6 25. Due to the symmetry also 9 6 yz 6 25 and 9 6 zx 6 25.

b) From the given equations we get

xy + yz + zx =
(x+ y + z)2 − (x2 + y2 + z2)

2
=

122 − 54
2

= 45.
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Further

(x− 3)(y − 3) + (y − 3)(z − 3) + (z − 3)(x− 3)
= xy + yz + zx− 6(x+ y + z) + 27 = 45− 6 · 12 + 27 = 0,

and we can see, that x− 3, y − 3, z − 3 cannot be all positive, that is at least one of
x, y, and z is at most 3. Similarly

(x− 5)(y − 5) + (y − 5)(z − 5) + (z − 5)(x− 5)
= xy + yz + zx− 10(x+ y + z) + 75 = 45− 10 · 12 + 75 = 0

implies x− 5, y − 5, z − 5 cannot be all negative, consequently at least one of x, y, z
is at least 5.

Another solution. The part b) of the problem can be solved geometrically. In
the Cartesian coordinate system in R3 with the center in O and axes x, y, z, the
first equation determines the plane σ, which goes through S = [4, 4, 4] and it is
perpendicular toOS, while the second equation determines the sphereK(O, r =

√
54).

The intersection of these is the circle k(S, ρ) (Fig. 2). Let us find the radius ρ and the
intersections with the plane x = y.

Let Sx, Sy, and Sz be the orthogonal projections of S on x, y, and z respectively.
We can see the cut with the plane OSSz. There is |OS1| = 4

√
2, |OS| = 4

√
3 (face

and body diagonals of the cube with edge of length 4), and |OA| =
√

54. Then the
Pythagoras theorem in OAS gives ρ = |SA| =

√
6 and the similarity SAU ∼ OSS1

implies |US| = 2 and |AU | =
√

2. Thus A = [5, 5, 2] and due to the symmetry with
respect to S we have D = [3, 3, 6].

O

z

x=y

A

D

S

U

S1

Sz

ρ

ρ

K

Fig. 2

O

y

x

A[5, 5, 2]

B[3, 6, 3]

C[2, 5, 5]

D[3, 3, 6]

E[5, 2, 5]

F [6, 3, 3]
S

k

Fig. 3

Similarly for OSSy and OSSx we find the intersections with k:

B = [3, 6, 3], E = [5, 2, 5] a C = [2, 5, 5], F = [6, 3, 3].
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A, B, C, D, E, F divide k into six arcs (Fig. 3 is the orthogonal projection of k onto
the plane z = 0), and we have

[x, y, z] ∈ ÃB ⇒ 2 6 z 6 3, 5 6 y 6 6, 3 6 x 6 5,

[x, y, z] ∈ B̃C ⇒ 2 6 x 6 3, 5 6 y 6 6, 3 6 z 6 5,

[x, y, z] ∈ C̃D ⇒ 2 6 x 6 3, 5 6 z 6 6, 3 6 y 6 5,

[x, y, z] ∈ D̃E ⇒ 2 6 y 6 3, 5 6 z 6 6, 3 6 x 6 5,

[x, y, z] ∈ ẼF ⇒ 2 6 y 6 3, 5 6 x 6 6, 3 6 z 6 5,

[x, y, z] ∈ F̃A ⇒ 2 6 z 6 3, 5 6 x 6 6, 3 6 y 6 5,

which proves b).

4. Let us consider a quadratic polynomial f(x) = ax2 + bx+ c with real coefficients
a > 2, b > 2, and c > 2. Adam and Boris can change the polynomial con-
secutively in the following game: Adam is allowed in his turn to choose one of
coefficients and replace it with the sum of the other two. Boris in his turn can
choose one of coefficients and replace it with the product of the other two. They
take turns and Adam begins. The winner is the one, who succeeds in his turn to
change the polynomial into the one with two distinct real roots. Depending on a,
b, and c, the coefficients of the original polynomial f(x), determine which of the
players has a winning strategy. (Michal Rolínek)

Solution. If Adam replaces b, he gets ax2 + (a+ c)x + c. This polynomial has two
different roots iff its discriminant (a + c)2 − 4ac = (a − c)2 is positive, which is the
case iff, a 6= c. If Adam replaces c, he gets ax2 + bx+ (a+ b). This has two distinct
real roots iff the discriminant b2 − 4a(a + b) =

(
b(1 +

√
2) + 2a

) (
b(
√

2− 1)− 2a
)

is
positive, that is iff b(

√
2− 1) > 2a. Since the discriminant of f(x) is symmetric with

respect to a and c, we get the same condition, if Adam replaces a.
So far we have: if a 6= c or b > 2√

2−1
a = 2(

√
2 + 1)a, Adam can win with his first

move.

Let us from now on suppose a = c and b 6 2(
√

2 + 1)a.

a) Adam changes f(x) into ax2 +bx+(a+b) or (a+b)x2 +bx+a. Now it is Boris’
turn. If he replaces b he gets either ax2 +a(a+b)x+(a+b) or (a+b)x2 +a(a+b)x+a,
with the same discriminant a2(a+ b)2 − 4a(a+ b) = a(a+ b) (a(a+ b)− 4), which is
positive (recall a > 2, b > 2). Boris wins.

b) Adam changes f(x) into ax2 + 2ax+a. Boris can replace the coefficient 2a by
a ·a = a2 to get ax2 +a2x+a with the discriminant a4−4a2 = a2(a+ 2)(a−2). This
is positive iff a > 2. That is if a > 2 Boris wins. If a = 2, which means Adam left the
polynomial 2x2+4x+2, Boris by replacing either the leading coefficient or the absolute
term (in both cases 2) gets either polynomial 8x2 +4x+2 or 2x2 +4x+8. Since 2 6= 8
and Adam is on turn, he wins (as in the first paragraph of the solution). If Boris
replaces the coefficient 4, actually nothing happens, and the polynomial 2x2 + 4x+ 2
stays the same. Adam is on turn. But according to a) and b) the only non-losing
move is to “change 4 by 4”, that is to leave the polynomial 2x2 +4x+2 after his move

15



as well. That is once we have the polynomial 2x2 + 4x + 2 in the game, the player
who actually changes it with his move, loses.

Conclusion.
. If a 6= c or b > 2

(√
2 + 1

)
a, Adam has a winning strategy.

. If a = c > 2 and b 6 2
(√

2 + 1
)
a, Boris has a winning strategy.

. If a = c = 2 and b 6 2
(√

2 + 1
)
a, no one has a winning strategy.

5. In an acute non-equilateral triangle ABC let P be the foot of the altitude from
C, V the orthocenter, O the circumcenter, D the intersection of the ray CO
with the segment AB, and E the midpoint of CD. Prove, that the line EP goes
through the midpoint of OV . (Karel Horák)

Solution. If ABC is isosceles with the base AB, the segment OV lies on the line
EP and the statement of the problem holds trivially.

Let us further assume that |AC| 6= |BC|, that is CV and CO are different.
According to the well-known fact, the mirror image V ′ of V with respect to the

line AB lies on the circumcircle of ABC, therefore P is the midpoint of V V ′ (see
Fig. 4).

A B

C

P D

E

O
V

V ′

Fig. 4

The triangle CV ′O is isosceles with the base CV ′, and because the midpoint
of CD is the circumcenter of the right triangle CPD, with the hypotenuse CD,
the triangle CPE is isosceles as well. Moreover these two isosceles triangles are
homothetic with center C (they have the same base angle and C, P , V ′ are collinear
as well as C, E, O). Thus PE ‖ V ′O.

Since P is the midpoint of V V ′, the midsegment of V ′OV parallel to V ′O lies on
the line PE. Thus the line PE intersect OV in its midpoint, qed.

6. Find all f : R+ → R+ satisfying

f(x)f(y) = f(y)f (xf(y)) +
1
xy
,
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for any x, y ∈ R+, where R+ denotes the set of positive real numbers.
(Pavel Calábek)

Solution. The formula implies f(y) 6= 0 for any y > 0, thus

f
(
x f(y)

)
= f(x)− 1

xy f(y)
. (1)

Let us denote f(1) = a > 0. If we substitute x = 1, resp. y = 1 into (1) we get

f
(
f(y)

)
= f(1)− 1

y f(y)
= a− 1

y f(y)
(y ∈ R+) (2)

f(ax) = f(x)− 1
ax

(x ∈ R+). (3)

Substituting x = 1 into (3) yields

f(a) = f(1)− 1
a

= a− 1
a
. (4)

Choosing x = a in (1) together with (4) gives

f
(
a f(y)

)
= f(a)− 1

ay f(y)
= a− 1

a
− 1
ay f(y)

(y ∈ R+).

Now using (3) and (2) we can rewrite the left hand side of the previous equation as

f
(
a f(y)

)
= f

(
f(y)

)
− 1
a f(y)

= a− 1
y f(y)

− 1
a f(y)

.

Comparing the right hand sides of the previous two equations we get

f(y) = 1 +
a− 1
y

(y ∈ R+). (4)

That is the only possible solutions are of the form (4). Substituting this form
into the original equation we find (a − 1)2 = 1, which together with the condition
a > 0 gives a = 2.

Conclusion. The unique solution of the problem is

f(x) = 1 +
1
x
.
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