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1. Find all pairs of primes p, q for which there exists a positive integer a such that

pq

p+ q
=
a2 + 1
a+ 1

.

(Ján Mazák, Róbert Tóth)

Solution. First, we will deal with the case when the wanted primes p and q are
distinct. Then, the numbers pq and p + q are relatively prime: the product pq is
divisible by two primes only (namely p and q), while the sum p + q is divisible by
neither of these primes.

We will look for a positive integer r which can be a common divisor of both a+1
and a2 + 1. If r | a+ 1 and, at the same time, r | a2 + 1, then r | (a+ 1)(a− 1) and
also r | (a2 + 1) − (a2 − 1) = 2, so r can only be one of the numbers 1 and 2. Thus

the fraction
a2 + 1
a+ 1

either is in lowest terms, or will be in lowest terms when reduced

by two, depending on whether the integer a is even, or odd.
If a is even, we must have

pq = a2 + 1 and p+ q = a+ 1.
The numbers p, q are thus the roots of the quadratic equation x2−(a+1)x+a2+1 = 0,
whose discriminant

(a+ 1)2 − 4(a2 + 1) = −3a2 + 2a− 3 = −2a2 − (a− 1)2 − 2
is apparently negative, so the equation has no solution in the real numbers.

If a is odd, we must have (taking into account the reduction by two)

2pq = a2 + 1 and 2(p+ q) = a+ 1.
The numbers p, q are thus the roots of the quadratic equation 2x2−(a+1)x+a2+1 = 0,
whose discriminant is negative as well.

Therefore, there is no pair of distinct primes p, q satisfying the conditions.
It remains to analyze the case of p = q. Then,

p · q
p+ q

=
p · p
p+ p

=
p

2
,

so we must have

p =
2(a2 + 1)
a+ 1

= 2a− 2 +
4

a+ 1
;

this is an integer if and only if a+ 1 | 4, i. e. a ∈ {1, 3}, so p = 2 or p = 5.
To summarize, there are exactly two pairs of primes satisfying the conditions,

namely p = q = 2 and p = q = 5.
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2. Two circles k1(S1, r1) and k2(S2, r2) are externally tangent and both lie in a
square ABCD with side length a so that k1 touches the sides AD and CD, while
k2 touches the sides BC and CD. Prove that the area of at least one of the
triangles AS1S2, BS1S2 is no more than 3

16 a
2. (Tomáš Jurík)

Solution. The line segments AS2 and BS1 lie on the diagonals of the given square,
so they are perpendicular to each other and intersect at the center P of the square.
We have

|DS1| = r1 ·
√

2, |BS1| = (a− r1)
√

2, |PS1| =
(a

2
− r1

)√
2,

|CS2| = r2 ·
√

2, |AS2| = (a− r2)
√

2, |PS2| =
(a

2
− r2

)√
2.

Therefore, the area of the triangle AS1S2 is

SAS1S2 =
1
2
|AS2| · |PS1| = (a− r2)

(a
2
− r1

)
,

while the area of the triangle BS1S2 is

SBS1S2 =
1
2
|BS1| · |PS2| = (a− r1)

(a
2
− r2

)
.

The sum of these areas is

S = (a− r2)
(a

2
− r1

)
+ (a− r1)

(a
2
− r2

)
= a2 − 3

2
a(r1 + r2) + 2r1r2.

Let K denote the point at which the circle k1 touches the side AD, H and L
denote the points at which k2 touches the sides CD and BC, respectively, and M be
the intersection point of the lines KS1 and HS2 (Fig. 1).

A B

CD

P

K

L

H

S1

S2

M

k1

k2

Fig. 1

By the Pythagoras’ theorem for the triangle S1MS2, we have

(a− r1 − r2)2 + (r1 − r2)2 = (r1 + r2)2.
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Hence we obtain

(a− r1 − r2)2 = 4r1r2,

a− r1 − r2 = 2
√
r1r2,

a = r1 + r2 + 2
√
r1r2 =

(√
r1 +

√
r2
)2

> 4
√
r1r2,

i. e.

r1r2 6
a2

16
.

The length of the segment DC cannot be greater than the length of the polygonal
chain KS1S2L, so

2r1 + 2r2 > a.

(This follows from the equality a = r1 + r2 + 2
√
r1r2 as well since 2

√
r1r2 6 r1 + r2,

by the AM-GM inequality.) Therefore,

S = a2 − 3
2
a(r1 + r2) + 2r1r2 6 a2 − 3

4
a2 +

1
8
a2 =

3
8
a2.

This means that at least one of the areas SAS1S2 , SBS1S2 is at most 3
16a

2.

Other Solution. We can set a = 1. The difference of the areas of the triangles
AS1S2 and BS1S2 is (according to the expression from the original solution)

SAS1S2 − SBS1S2 = (1− r2)
(1

2
− r1

)
− (1− r1)

(1
2
− r2

)
=

1
2
(r2 − r1).

Without loss of generality, we can assume that r1 > r2. Then SAS1S2 6 SBS1S2 . Now,
let us calculate the area of the triangle AS1S2. By the Pythagoras’ theorem, we have
(1− r1 − r2)2 + (r1 − r2)2 = (r1 + r2)2, hence

√
r1 +

√
r2 = 1, so r2 =

(
1−

√
r1
)2

.
Let us denote x =

√
r1. It follows from the inequalities r1 + r2 > 1

2 and r1 > r2 that
r1 > 1

4 , and, on the other hand, we have r1 6 1
2 since the circle k1 lies in the square

ABCD. Hence it follows that 1
2 6 x 6

√
1
2 . The area of the triangle AS1S2 is

SAS1S2 =(1− r2)
(1

2
− r1

)
=

1
2
− r1 −

r2
2

+ r1r2 =

=
1
2
− x2 − 1

2
(1− x)2 + x2(1− x)2 = x4 − 2x3 − 1

2
x2 + x;

SAS1S2 −
3
16

=x4 − 2x3 − 1
2
x2 + x− 3

16
=
(
x− 1

2

)(
x3 − 3

2
x2 − 5

4
x+

3
8

)
=

=
(
x− 1

2

)[
x2
(
x− 3

2

)
− 5

4

(
x− 3

10

)]
6 0

as we have 3
10 <

1
2 6 x 6 1

2

√
2 < 3

2 . Therefore, SAS1S2 6 3
16 .
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3. Let p(n) denote the number of all n-digit positive integers containing only the
digits 1, 2, 3, 4, 5 and such that every two adjacent digits differ by at least 2.
Prove that for every positive integer n,

5 · 2.4n−1 6 p(n) 6 5 · 2.5n−1.

(Pavel Novotný)

Solution. Cutting off the last digit of a satisfactory (n + 1)-digit integer yields a
satisfactory n-digit integer. Notice how a satisfactory (n + 1)-digit integer can be
constructed from a satisfactory n-digit integer. If the last digit of the integer is 1, we
can append any of the digits 3, 4, 5. If the last digit is 2, we can append 4 or 5; if it is
3, 1 or 5 can be appended; if it is 4, 1 or 2 can be appended; and, finally, in the case
of 5, we can append any of the digits 1, 2, 3. Thus we can see that only the last digit
matters. So now, let an denote the number of satisfactory n-digit integers ending in 1
or 5; similarly bn for 2 or 4, and cn for integers ending in 3. Then p(n) = an +bn +cn.
Apparently, a1 = b1 = 2, c1 = 1, p(1) = 5 = 5 · 2.40 = 5 · 2.50, a2 = 6, b2 = 4, c2 = 2,
p(2) = 12 = 5 · 2.41 < 5 · 2.51.

The above reasoning implies the recurrent formulae

an+1 = an + bn + 2cn, bn+1 = an + bn, cn+1 = an. (1)

Hence it follows that a3 = 14, b3 = 10, c3 = 6, p(3) = 30 ∈ 〈5 · 2.42; 5 · 2.52〉.
Using mathematical induction, we prove that for every n > 3, it holds that

an > 2.4n, bn >
2
3
· 2.4n, cn > 2.4n−1.

It indeed does for n = 3. If an > 2.4n, bn > 2
3 · 2.4

n and cn > 2.4n−1, then also

an+1 = an + bn + 2cn >2.4n +
2
3
· 2.4n + 2 · 2.4n−1 =

= 2.4n ·
(
1 +

2
3

+
5
6

)
= 2.5 · 2.4n > 2.4n+1,

bn+1 = an + bn >2.4n +
2
3
· 2.4n =

5
3
· 2.4n >

2
3
· 2.4n+1,

cn+1 = an >2.4n.

It follows from the proved inequalities that

p(n) = an + bn + cn > 2.4n +
2
3
· 2.4n + 2.4n−1 = (2.4 + 1, 6 + 1) · 2.4n−1 = 5 · 2.4n−1.

The latter inequality can be proved analogously; we will verify that for n > 3,

an 6 k · 2.5n, bn 6 k · 2
3
· 2.5n, cn 6 k · 2.5n−1, (2)
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where k is a suitably chosen number. Then we will have

p(n) = an + bn + cn 6 k · 2.5n−1 ·
(
2.5 +

5
3

+ 1
)

= k · 2.5n−1 · 31
6

= 5k · 31
30
· 2.5n−1.

Therefore, setting k = 30
31 , we get p(n) 6 5 · 2.5n−1 for every n > 3.

It remains to prove, by mathematical induction, the inequalities (2) where k = 30
31 .

They hold for n = 3. If (2) holds, we also have

an+1 = an + bn + 2cn 6k · 2.5n ·
(
1 +

2
3

+
4
5

)
= k · 2.5n · 37

15
< k · 2.5n+1,

bn+1 = an + bn 6k · 2.5n ·
(
1 +

2
3

)
= k · 2

3
· 2.5n+1,

cn+1 = an 6k · 2.5n.

Other Solution. We will show that each of the sequences {an}, {bn}, {cn}
defined in the above solution satisfies (as a consequence of the equalities (1)) the
recurrent equation xn+2 = 2xn+1 + 2xn − 2xn−1, and so this equation is satisfied by
the sequence p(n) = an + bn + cn in question, which we will denote by (3).

Indeed, the first and third equalities of (1) give an+1 = an + bn + 2an−1, whence

bn = an+1 − an − 2an−1, so bn+1 = an+2 − an+1 − 2an.

Considering the second equality in (1), we thus get

an+2 − an+1 − 2an = bn+1 = an + bn = an + (an+1 − an − 2an−1).

Confronting the marginal expressions leads to the mentioned equality

an+2 = 2an+1 + 2an − 2an−1.

Triple substitution of an = bn+1− bn into the equality bn = an+1− an− 2an−1 yields

bn = (bn+2 − bn+1)− (bn+1 − bn)− 2(bn − bn−1),

which can be rearranged to

bn+2 = 2bn+1 + 2bn − 2bn−1.

Finally, the sequence {cn} is merely a shifted sequence {an}, so

cn+2 = an+1 = 2an + 2an−1 − 2an−2 = 2cn+1 + 2cn − 2cn−1.

Combining all of the three recurrent formulae, we get

p(n+ 2) = 2p(n+ 1) + 2p(n)− 2p(n− 1). (3)
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Using mathematical induction, we will prove that for every k > 1,

2.4p(k) 6 p(k + 1) 6 2.5p(k). (4)

The inequalities (4) hold for both k = 1 and k = 2. If (4) holds for all k ∈
{1, 2, . . . , n+ 1, n+ 2}, then

p(n+ 3) = 2
(
p(n+ 2) + p(n+ 1)− p(n)

)
>

> 2
(
p(n+ 2) + p(n+ 1)− p(n+ 1)

2.4

)
= 2
(
p(n+ 2) +

7p(n+ 1)
12

)
>

> 2
(
p(n+ 2) +

7
12
· p(n+ 2)

2.5

)
=

74p(n+ 2)
30

> 2.4p(n+ 2).

Similarly,

p(n+ 3) 62
(
p(n+ 2) + p(n+ 1)− p(n+ 1)

2.5

)
6

62
(
p(n+ 2) +

3
5
· p(n+ 2)

2.4

)
= 2.5p(n+ 2).

The equalities 5 · 2.40 = p(1) = 5 · 2.50 and the inequalities of (4) imply that the
inequality 5 · 2.4n−1 6 p(n) 6 5 · 2.5n−1 holds for every positive integer n.

Poznámka. The equation (3) is called linear differential equation with constant
coefficients. The well-known recurrent formula gn+1 = gn · q for geometric sequences
indicates that the equation (3) could be satisfied by some geometric sequences, i. e.,
p(n) = qn. Substituting into (3) yields the so-called characteristic equation for the
common ratio q:

q3 − 2q2 − 2q + 2 = 0,

which has three real roots q1
.= −1.170 086 487, q2

.= 0.688 892 182, q3
.= 2.481 194 304.

It can be proved that every solution of the equation (3) is a linear combination of the
sequences {qn

1 }, {qn
2 } and {qn

3 }, i. e.,

p(n) = α · qn
1 + β · qn

2 + γ · qn
3 .

The coefficients α, β, γ can be determined from the system of equations

αq1+βq2+γq3 = p(1) = 5, αq21+βq22+γq23 = p(2) = 12, αq31+βq32+γq33 = p(3) = 30.

Instead of the third equation, we could use α + β + γ = p(0) = 2; the number p(0)
cannot be defined as the number of 0-digit integers, yet p(0) = 2 is taken to satisfy
(3) with n = 1. Therefore, we get the approximation

p(n) ≈ −0.063 627 546qn
1 + 0.108 637 179qn

2 + 1.954 990 367qn
3

for the terms of the examined sequence. (This approximation can be used for n up
to around 20; for greater values of n, the rounding errors begin to take effect.)
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4. Find all functions f : R \ {0} → R such that for all non-zero numbers x, y,

x · f(xy) + f(−y) = x · f(x).

(Pavel Calábek)

Solution. Substituting x = 1 gives

f(y) + f(−y) = f(1).

Denoting f(1) = a, we have f(−y) = a− f(y). Substituting y = −1, we get

x · f(−x) + f(1) = x · f(x),

i. e.,
x
(
a− f(x)

)
+ a = x · f(x),

hence

f(x) =
a(x+ 1)

2x
=
a

2

(
1 +

1
x

)
.

Finally, we check that for any real number c, the function f(x) = c(1 + 1/x) satisfies
the conditions:

x · f(xy) + f(−y) = x · c
(
1 +

1
xy

)
+ c
(
1 +

1
−y

)
= c
(
x+

1
y

+ 1− 1
y

)
=

= c(x+ 1) = cx
(
1 +

1
x

)
= x · f(x).

Other Solution. Let us set f(1) = a. Substituting y = −1 into the given
equation yields

xf(−x) + a = xf(x),

i. e.,

f(−x) = f(x)− a

x
. (1)

The given equation can be rearranged into the form

f(xy) +
1
x
· f(−y) = f(x),

whence, using (1), we have

f(xy) +
1
x

(
f(y)− a

y

)
= f(x),

f(xy) +
f(y)
x
− a

xy
= f(x).
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Interchanging x and y gives

f(yx) +
f(x)
y
− a

yx
= f(y),

so, combining the last two equations, we get

f(x)
y
− f(y)

x
= f(y)− f(x),

and substituting y = 1 now gives

2f(x) = a
(
1 +

1
x

)
.

Again, we can easily verify that every function f(x) = c(1 + 1/x) is a solution of the
given functional equation.

5. Let I be the incenter of a triangle ABC. The circle passing through the vertex
B and touches the line AI at I intersects the sides AB and BC at points P and
Q, respectively. Let R be the intersection point of the line QI and the side AC.
Prove that

|AR| · |BQ| = |PI|2.

(Jaroslav Švrček)

Solution. Let α, β, γ denote the measures of the interior angles at the vertices A,
B, C, respectively, of the triangle ABC, and let J be the intersection point of the line
AI and the side BC. (Fig. 2). The inscribed angle PBI corresponds to the chord PI,
while the inscribed angle QBI corresponds to the chord IQ, and since the measure
of both of these angles is 1

2β, the chords PI and IQ share the same length as well.

A B

C

P

Q

R

1
2β

I

J

Fig. 2

8



Since the inscribed angle JIQ also corresponds to the chord IQ, its measure is
also 1

2β. It follows from the congruence of vertical angles that | 6 RIA| = 1
2β. This

measure is also shared by the inscribed angle PIA as it corresponds to the chord PI
of equal length as IQ. Further, |6 RAI| = | 6 PAI| = 1

2α. The triangles RIA and
PIA are thus congruent by ASA, hence |RI| = |PI|.

Therefore, the measure of the angle QIB is

|6 QIB| =180◦ − | 6 AIB| − | 6 JIQ| = 180◦ −
(
90◦ +

γ

2

)
− β

2
=

=90◦ −
(β

2
+
γ

2

)
=
α

2
= |6 RAI|.

The measure of the angle QIB could also be determined as follows: Since
the inscribed angles AIP and IPQ correspond to chords of equal length, we have
|6 AIP | = 1

2β = | 6 IPQ|. The congruence of alternate angles implies that AI ‖ PQ.
Hence |6 QPB| = |6 IAB| = 1

2α, and so | 6 QIB| = 1
2α as well since they are both

inscribed angles corresponding to the chord QB.
Since | 6 QIB| = |6 RAI| and | 6 QBI| = | 6 RIA|, it follows that AIR ∼ IBQ.

Therefore, |AR|/|RI| = |IQ|/|QB|, so

|AR| · |QB| = |RI| · |IQ| = |PI|2.

To prove similarity of the triangles AIR and IBQ, we could have made use of the
fact that the triangle CRQ is isosceles, so its median coincides with its angle bisector.

6. In the real numbers, solve the following system of equations:

sin2 x+ cos2 y = tan2 z,

sin2 y + cos2 z = tan2 x,

sin2 z + cos2 x = tan2 y.

(Pavel Calábek)

Solution. Substituting cos2 x = a, cos2 y = b, cos2 z = c leads to the system

1− a+ b =
1
c
− 1,

1− b+ c =
1
a
− 1,

1− c+ a =
1
b
− 1,

(1)

where a, b, c ∈ (0, 1〉.
Adding these equations together yields

1
a

+
1
b

+
1
c

= 6,

so the harmonic mean of the numbers a, b, c is 1
2 .
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Multiplying the equations by the numbers c, a, and b, respectively, we get

c− ac+ bc =1− c,
a− ab+ ac =1− a,
b− bc+ ab =1− b,

which sums to 2(a+ b+ c) = 3. Therefore, the arithmetic mean of the numbers a, b,
c is 1

2 , too. Since the arithmetic and harmonic means are equal, it must be that a =
b = c = 1

2 . We can easily verify that this triple satisfies the system (1). The solutions
of the original system are thus exactly the triples ( 1

4π + 1
2kπ,

1
4π + 1

2 lπ,
1
4π + 1

2mπ),
where k, l, m are integers.

Jiné řešení. We use the substitution from the above solution. The system (1)
is cyclic; if a triple (p, q, r) satisfies it, then so do the triples (q, r, p) and (r, p, q).
Therefore, it suffices to find the solutions for which a > b, a > c, and all the other
solutions can then be obtained by cyclic exchange.

Let a > b, a > c. It follows from the first equation that 1/c = 2 − a + b 6 2, so
c > 1

2 . Similarly, it follows from the third equation that 1/b = 2− c+a > 2, so b 6 1
2 ,

and thus b 6 c. ¿From the second equation, we have 1/a = 2 − b + c > 2, so a 6 1
2 .

Altogether,
1
2

> a > c >
1
2
,

so a = c = 1
2 . Now, any of the equations of the system (1) yields b = 1

2 . Just as
in the previous case, we verify that the found triple satisfies the system (1); so the
solutions of the system are the triples ( 1

4π + 1
2kπ,

1
4π + 1

2 lπ,
1
4π + 1

2mπ), where k, l,
m are integers.
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First Round of the 62nd Czech and Slovak
Mathematical Olympiad
(December 6th, 2012)

MO
1. There are two touching circles, k1(S1, r1 and k2(S2, r2) in an rectangle ABCD

with |AB| = 9, |BC| = 8. Moreover k1 touches AD and CD, while k2 touches
AB and BC.

a) Prove r1 + r2 = 5.
b) What is the least and what is the greatest possible area of AS1S2?

(Pavel Novotný)

Solution. a) Let M and N be intersections of the line through S1 parallel to AD.
Analogously let K and L be intersections of the line through S2 parallel to AB. Let P
be the intersection of KL and MN (see Fig. 1). The Pythagoras theorem for S1PS2

gives

(r1 + r2)2 = (8− r1 − r2)2 + (9− r1 − r2)2, (1)

(r1 + r2)2 − 34(r1 + r2) + 145 = 0,

(r1 + r2 − 5)(r1 + r2 − 29) = 0.

Since 2r1 6 8, 2r2 6 8, we have r1 + r2 = 5.

A B

CD

P
K L

M

S1

S2

N

Q

R
T

α

k1

k2

Fig. 1

b) Let Q be a foot of a perpendicular to AB from S2, let R be a foot of a
perpendicular to AD from S1 and let T be the intersection of QS2 and RS1 (Fig. 1).
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The area S of AS2S1 is given by the difference of the area of rectangle AQTR and
areas of right triangles AQS2, AS1R, and S1S2T :

S = (9− r2)(8− r1)−
1
2
r2(9− r2)−

1
2
r1(8− r1)−

1
2
(9− r1 − r2)(8− r1 − r2)

= 72− 9r1 − 8r2 + r1r2 −
9
2
r2 +

1
2
r22 − 4r1 +

1
2
r21 − 36 +

17
2

(r1 + r2)

− 1
2
(r1 + r2)2

= 36− 9
2
r1 − 4r2 = 36− 9

2
r1 − 4(5− r1) = 16− 1

2
r1,

where we used r1 + r2 = 5. Further we know 2r1 6 8 and 2r2 6 8 which implies r1,
r2 1 6 r1, r2 6 4, thus

S = 16− 1
2
r1 ∈

〈
14,

31
2

〉
;

and the least possible value of the area is 14, for r1 = 4 and r2 = 1, and the greatest
value possible is 31

2 , for r1 = 1 and r2 = 4.

2. The number 0 is written on each of the n+ 1 faces of an n-sided pyramid. In a
step we choose a vertex and we increase by 1 each number on the faces, which
contain the vertex. Show, that in such way, we cannot get number 1 written on
each face. (Peter Novotný)

Solution. Let b the sum of numbers on side faces of the pyramid, let a be the number
on the base. After a step involving any base vertex, b increases or decreases by 2 and
a increases or decreases by 1, that means the the value V = b − 2a stays the same.
If we choose for a step the apex, only b increases or decreases by n, thus V increases
or decreases by n as well. Therefore V is in the process always divisible by n. But in
the position with number 1 written on each side, the corresponding V is n− 2, which
in not divisible by n (as n > 2).

3. Find all real a, b, c, such that

a2 + b2 + c2 = 26, a+ b = 5 and b+ c > 7.

(Pavel Novotný)

Solution. We show that the only solution is a = 1, b = 4 a c = 3.
Let s = b+ c > 7. Substituting a = 5− b and c = s− b the first condition gives

(5− b)2 + b2 + (s− b)2 = 26,

thus
3b2 − 2(s+ 5)b+ s2 − 1 = 0. (5)

The equation has a real solution iff the discriminant 4(s+ 5)2 − 12(s2 − 1) > 0. This
yields s2 − 5s− 14 6 0, or (s+ 2)(s− 7) 6 0. Since s > 7, there must be s = 7. If we
substitute to (5) we get

3b2 − 24b+ 48 = 0;

with the only solution b = 4. Then a = 1 and c = 3.
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Second Round of the 62nd Czech and Slovak
Mathematical Olympiad
(January 15th, 2013)

MO
1. In a group of 21 different integers a sum of arbitrary eleven ones is greater than

a sum of the remaining ten numbers.
a) Prove that every considered number is greater than 100.
b) Find all such groups of 21 different integers containing number 101.

(Jaromír Šimša)

Solution. a) Let the numbers are a1 < a2 < a3 < · · · < a21. Since they are integers,
for every i ∈ {1, 2, . . . , 20} holds ai+1−ai > 1, and therefore ai+10−ai > 10 for every
i ∈ {1, 2, . . . , 11}.

The problem condition is fulfilled if and only if the sum

a1 + a2 + · · ·+ a11 > a12 + a13 + · · ·+ a21. (1)

This follows

a1 > (a12 − a2) + (a13 − a3) + · · ·+ (a21 − a11) > 10 · 10 = 100.

Since the least of the numbers is greater then 100, the other ones are greater than
100 too.

b) We have proved a1 > 101. The other numbers are greater than 101. If the
number 101 is in the group of positive integers, then a1 = 101 holds. The strict
inequality (1) gives

(a12 − a2) + (a13 − a3) + · · ·+ (a21 − a11) 6 a1 − 1 = 100,

and because ai+10 − ai > 10, the equality ai+10 − ai = 10 holds for every i ∈
{2, 3, . . . , 11}. It comes to pass if and only if the numbers a2, a3, . . . , a21 are con-
secutive integers.

The required group consists of number 101 and arbitrary 20 consecutive integers
which are greater than 101. Then the difference of sums of 11 minimal numbers and
10 maximal numbers is 1.

2. Let A, B be sets of positive integers such that a sum of arbitrary two different
numbers from A is in B and a ratio of arbitrary two different numbers from B
(greater one to smaller one) is in A. Find the maximum number of elements in
A ∪B. (Martin Panák)

13



Solution. Initially we will prove that the set A consists from at most two numbers.
Suppose that three numbers a < b < c belongs to the set A. Then the numbers
a+ b < a+ c < b+ c are in B and therefore the number

b+ c

a+ c
= 1 +

b− a
a+ c

;

have to be in A. This is contradiction because 0 < b − a < a + c and the number is
not integer.

If the set B contains four numbers k < l < m < n, then the set A will contain
three different numbers n/k, n/l, n/m. So the set B has at most three elements and
A ∪B has at most five elements.

We achieve the number 5 of elements if A = {a, b}, B = {k, l,m}, where a < b
and l/k = m/l = a, m/k = b. Then b = a2 (a > 2) and a+ a2 is one of the elements
of B; the next two elements are either a2 + a3 and a3 + a4 or 1 + a and a2 + a3. Eg.
sets A = {2, 4}, B = {3, 6, 12} have five elements together.

3. Touching circles k1(S1, r1) and k2(S2, r2) lie in a right-angled triangle ABC with
the hypotenuse AB and legs AC = 4 and BC = 3 in such way, that the sides
AB, AC are tangent to k1 and the sides AB, BC are tangent to k2. Find radii
r1 a r2, if 4r1 = 9r2. (Pavel Novotný)

Solution. The hypotenuse AB has length AB = 5 with respect to Pythagoras’ the-
orem. Then for angles in the triangle there is cosα = 4

5 , cosβ = 3
5 ,

cot
α

2
=

√
1 + cosα
1− cosα

= 3,

cot
β

2
=

√
1 + cosβ
1− cosβ

= 2.

A B

C

D E

F

S1

S2

k1

k2r1

r2

α/2 β/2

Fig. 1
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Since both circles k1, k2 whole lie in the triangle ABC, they are externally
tangent—in the opposite case the leg tangent to the smaller circle intersects the
greater circle. Let circles k1 and k2 touch the side AB at points D resp. E and let
point F be orthogonal projection of the point S2 to the element S1D (Fig. 1, under
assumption is r1 > r2). Using Pythagoras’ theorem for a triangle FS2S1 we obtain

(r1 + r2)2 = (r1 − r2)2 +DE2,

which follows DE = 2
√
r1r2.

An equality AB = AD +DE + EB gives

c = r1 cot
α

2
+ 2
√
r1r2 + r2 cot

β

2
= 3r1 + 2

√
r1r2 + 2r2,

and since r1 = 9
4r2 we obtain

27
4
r2 + 3r2 + 2r2 = 5,

which follows

r2 =
20
47
, r1 =

45
47
.

Remark. Both circles lie really in the triangle ABC because an incircle of the
triangle has diameter % = ab/(a+ b+ c) = 1, while both values r1, r2 are less than 1.

4. Prove that positive a, b, c are length of sides of a triangle if and only if a system
of equations

a(yz + x) = b(zx+ y) = c(xy + z), x+ y + z = 1

with unknowns x, y, z has a solution in positive reals. (Tomáš Jurík)

Solution. Let a, b, c be positive numbers. We search a solution of the system of
equations in the set of positive integers. Due to x+ y+ z = 1 the numbers x, y, z are
in an interval (0, 1). Substituting z = 1− x− y we obtain

a(y − xy − y2 + x) = c(xy + 1− x− y), b(x− x2 − xy + y) = c(xy + 1− x− y),

these equations can be rewritten as

ay(1− y) + ax(1− y) = c(1− x)(1− y), bx(1− x) + by(1− x) = c(1− x)(1− y).

Since x < 1, y < 1, we have

ay + ax = c− cx, bx+ by = c− cy.

From the previous two equations we obtain

x+ y =
2c

a+ b+ c
a x− y =

(b− a)(x+ y)
c

=
2(b− a)
a+ b+ c

;

15



then we get formulas for x, y and finally by z = 1−x− y we find a formula for z too:

x =
b+ c− a
a+ b+ c

, y =
c+ a− b
a+ b+ c

, z =
a+ b− c
a+ b+ c

. (1)

The system has a solution in positive reals if and only if b+ c > a, c+a > b, a+ b > c
holds, what is equivalent with existence of a triangle with sides a, b, c.

We need not do check the values (1) due to equivalence of all rearrangements.

Other Solution. Here is an easier way to obtain (1). Since x + y + z = 1 we
can rewrite the first part of the system as

a(1− y)(1− z) = b(1− z)(1− x) = c(1− x)(1− y). (2)

Dividing (1− x)(1− y)(1− z) (what is nonzero, even positive) we obtain equivalent
system

a

1− x
=

b

1− y
=

c

1− z
.

If s is common (positive) value of three previous fractions, we can easy get

x = 1− a

s
, y = 1− b

s
, z = 1− c

s
, (3)

which substituting to the equation x+ y + z = 1 gives

s =
a+ b+ c

2
.

It follows from (3) that this s yields the formulae (1), and then the proof of the
problem statement.
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Final Round of the 62nd Czech and Slovak
Mathematical Olympiad
(March 18–19, 2013)

MO
1. Find all pairs of integers a, b such that

a2 + 1
2b2 − 3

=
a− 1
2b− 1

.

(Pavel Novotný)

Solution. Obviously a 6= 1, thus we can rewrite the equation as

a2 + 1
a− 1

=
2b2 − 3
2b− 1

. (1)

The numerator of the fraction on the left is positive, the numerator on the right is
negative just for b ∈ {−1, 0, 1}.

For b = −1 we get 3a2 − a+ 4 = 0, which has no real solution.
Similarly for b = 0 we get a2 − 3a+ 4 = 0 which has no real solution either.
For b = 1 we get a2 + a = a(a + 1) = 0, with solutions a ∈ {0,−1}. Thus pairs

(0, 1) and (−1, 1) are solutions of the problem.
Let us further assume 2b2 − 3 > 0, and let us find out with which numbers we

can reduce the fractions in (1).
If some integer n divides both a2+1 and a−1, it divides a2+1−(a+1)(a−1) = 2

as well. Similarly if n divides both 2b2 − 3 and 2b − 1, it divides (2b − 1)(2b + 1) −
2(2b2 − 3) = 5.

Thus there are four possibilities to fulfill the equation in (1).
(i) a2 + 1 = 2b2 − 3 and a− 1 = 2b− 1, which has no real solution.

(ii) a2 + 1 = 2(2b2 − 3) and a− 1 = 2(2b− 1); substituting a = 4b− 1 into the first
equation we get 3b2 − 2b+ 2 = 0, with no real solutions.

(iii) 5(a2 + 1) = 2b2 − 3 and 5(a− 1) = 2b− 1, with solution a = 0, b = −2.
(iv) Finally 5(a2 + 1) = 2(2b2 − 3) and 5(a − 1) = 2(2b − 1) with solutions a = −1,

b = −2 and a = 7, b = 8.
Thus there are five solutions of the problem:

(0, 1), (−1, 1), (0,−2), (−1,−2), (7, 8).
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2. Each of n Robin Hoods (n > 3) robbed some coins. Together they have earned
100n coins. They have decided to cut the loot in a following way: in one step
one Robin can take his two coins and give to some other two Hoods, one coin
each. Find all positive integers n > 3 for which they can split the loot in equal
parts (100 coins each). (Ján Mazák)

Solution. Let zi denotes through the process the number of coins of ith Robin Hood.

Let n = 3. After any step, z1 − z2 modulo 3 does not change. That means for
z1 = 101, z2 = 100, and z3 = 99 (out of many choices), z1 will never be the same as
z2. Thus n = 3 is not a solution.

Now we show that for each n > 4 any initial zi the loot can be split in equal
parts.

Let s =
∑
|zi−100|. We decrease number s as long as it can be done in the way,

that some of the outlaws with maximal count of coins gives his two coins to (some of
the) Hoods, with the minimal count of coins. If s can be reduced to 0 in this way, we
are done.

If s 6= 0, some of the outlaws has 100− k coins (k > 0), k outlaws have 101 coins
each and all the others have 100 coins each. If k > 2, we decrease s in two steps:

100− k, 101, 101 −→ 100− k + 1, 102, 99 −→ 100− k + 2, 100, 100.

If k is even, then after 1
2k such “double” steps every outlaw will have 100 coins

each. If k is odd then we end in the state in which one of the outlaws has 99 coins,
one has 101 coins and all the others have 100 coins. We finish as follows:

99, 100, 100, 101 −→ 99, 101, 101, 99 −→ 99, 102, 99, 100 −→ 100, 100, 100, 100.

3. Given a parallelogram ABCD with center S, denote by O the incenter of triangle
ABD and by T the point of contact of the incircle of triangle ABD with the
diagonal BD. Prove that lines OS and CT are parallel. (Jaromı́r Šimša)

Solution. Denote the lengths of AB, AD, and BD by a, b, and c, respectively. If
a = b then both OS and CT coincide with AC and the conclusion is trivial. Suppose
a > b (the case b > a being completely analogous).

Let T ′ be the reflection of T in S (Fig. 1). As CT ‖ AT ′, it suffices to prove
OS ‖ AT ′. Denoting by E the intersection of AO and the diagonal BD we may as
well prove

AO

OE
=
T ′S

SE
(1)

(note that since a > b, points T ′, S, E, and T lie on the diagonal BD in this order).
We express both ratios in terms of a, b, c.

18



A B

CD

E

S

T

T ′

O
O′

Fig. 1

First, it is well-known that

DT =
b+ c− a

2
, and hence T ′S = TS =

c

2
− b+ c− a

2
=
a− b

2
.

Next, the Angle Bisector Theorem in triangles ABD and AED implies

BE : ED = AB : AD and AO : OE = AD : DE

which in turn gives

BE =
ac

a+ b
and DE =

bc

a+ b
,

SE = BE −BS =
ac

a+ b
− c

2
=
c(a− b)
2(a+ b)

,

AO

OE
=
AD

DE
=

b

bc

a+ b

=
a+ b

c
.

Finally for the right-hand side we calculate

T ′S

SE
=

a− b
2

c(a− b)
2(a+ b)

=
a+ b

c

which finishes the proof.

4. There is written a number N (in the decimal representation) on the board. In a
step we erase the last digit c and instead of the number m, which is now left on
the board, we write number |m − 3c| (for example, if N = 1204 was written on
the board, then after the step there will be 120− 3 · 4 = 108). We continue until
there is a one-digit number on the board. Find all positive integers N such that
after a finite number of steps number 0 is left on the board. (Peter Novotný)

Solution. Let us find N , which lead to zero on the board after only one step. Obvi-
ously |m − 3c| = 0 iff m = 3c, which is N = 10m + c = 31c. All such N are of the
form N = 31c, c ∈ {1, 2, · · · , 9}.
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We show that the solution of the problem are exactly all multiples of 31. Since
c = N − 10m, there is m− 3c = 31m− 3N , that is the divisibility by 31 is preserved
in the step. Now we show, that a multiple of 31 actually decreases in the step. We
have already shown that for N 6 31 · 9. Let N = 31k, where k > 10. Then m > 31,
m− 3c > 0, thus |m− 3c| = 31m− 3N < 4N − 3N = N and we are done.

5. Let ABCD be a parallelogram such that the projections K, L of D onto the sides
AB, BC, respectively, are their interior points. Prove that KL ‖ AC if and only
if

6 BCA+ 6 ABD = 6 BDA+ 6 ACD.

(Ján Mazák)

Solution. Alternate angles ABD and CDB are equal (Fig. 2), hence 6 BCA +
6 ABD+ 6 BDA+ 6 ACD = 180◦. The equality 6 BCA+ 6 ABD = 6 BDA+ 6 ACD
thus holds if and only if

6 BCA+ 6 ABD = 90◦. (1)

A B

CD

S

K

L

Fig. 2

Points K and L lie on a circle with diameter BD. Hence the inscribed angles
BDK and BLK are equal and (due to equal alternate angles ABD and CDB)

6 BLK + 6 ABD = 6 BDK + 6 CDB = 90◦.

Lines KL and AC are parallel if and only if 6 BLK = 6 BCA which is by the
last equality equivalent to (1). The equivalence is thus proven.

6. Find all real p such that the inequality√
a2 + pb2 +

√
b2 + pa2 > a+ b+ (p− 1)

√
ab

holds for any real a and b. (Jaromı́r Šimša)

Solution. If a = b = 1 the parameter p > 0 has to satisfy:

2
√
p+ 1 > p+ 1,

2 >
√
p+ 1,

p 6 3.
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We show that for p ∈ (0, 3〉 the inequality holds for any real a and b.
If p ∈ (0, 1〉 the inequality holds trivially:√

a2 + pb2 > a,
√
b2 + pa2 > b a (p− 1)

√
ab 6 0.

Let further be p ∈ (1, 3〉. The left hand side, LHS, of the inequality can be understood
as the sum of the lengths of vectors (a, b

√
p) and (b, a

√
p) ∈ R2, According to the

triangle inequality then

LHS =
√
a2 + pb2 +

√
b2 + pa2 = |(a, b√p)|+ |(b, a√p)|

> |(a+ b, (a+ b)
√
p)| = (a+ b)

√
1 + p. (1)

For the RHS we have (with the help of AM-GM inequality)

RHS = a+ b+ (p− 1)
√
ab 6 a+ b+ (p− 1)

a+ b

2
=

(p+ 1)(a+ b)
2

.

Now LHS > RHS evidently, because even stronger inequality

(a+ b)
√
p+ 1 >

(p+ 1)(a+ b)
2

is equivalent to
√
p+ 1 6 2, which is obviously satisfied for any p ∈ (1, 3〉.

Remark. We can get (1) using Cauchy-Schwarz inequality for pairs (a, b
√
p)

and (1,
√
p):

a+ pb 6
√
a2 + pb2 ·

√
1 + p,

which implies

√
a2 + pb2 >

a+ pb√
1 + p

,
√
b2 + pa2 >

b+ pa√
1 + p

,

summing last two inequalities we get (1) and analogously for the second inequality.
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The Czech team is supported by the Karel Janeček’s foundation.

Účast reprezentačního družstva ČR na 54. mezinárodní matematické olympiádě byla
podpořena Nadačním fondem Karla Janečka na podporu vědy a výzkumu, sponzorem
matematické olympiády v ČR.


