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1. Let (an)

∞
n=1 be an infinite sequence such that for all positive integers n we have

an+1 =
a2n

a2n − 4an + 6
.

a) Find all values a1 for which the sequence is constant.
b) Let a1 = 5. Find ⌊a2018⌋. (Vojtech Bálint)

Solution. a) Assume (an)
∞
n=1 is constant. Then a2 = a1, hence

a1 =
a21

a21 − 4a1 + 6

which rewrites as a1(a1 − 2)(a1 − 3) = 0. It follows that a1 ∈ {0, 2, 3}. On the other
hand, once a2 = a1, the sequence is clearly constant (formally e.g. by mathematical
induction), thus any such a1 indeed works.

b) Let a1 = 5. Using the recurrence, we obtain a2 ≈ 2.27, a3 ≈ 2.49, a4 ≈ 2.77,
and so on. This leads to the following conjecture: For any n > 2 we have 2 < an < 3.
Below we prove the conjecture by mathematical induction.

For n = 2 the conjecture holds. Suppose it holds for some fixed n > 2. Then

3− an+1 = 3− a2n
a2n − 4an + 6

=
2(an − 3)2

(an − 2)2 + 2
> 0,

an+1 − 2 =
a2n

a2n − 4an + 6
− 2 =

(6− an)(an − 2)

(an − 2)2 + 2
> 0.

This proves 2 < an+1 < 3, hence the proof of the conjecture is complete. In particular,
2 < a2018 < 3 and the answer is ⌊a2018⌋ = 2.

2. Let ABC be an acute-angled triangle and let D be the foot of its A-altitude.
Denote by D1 and D2 the reflections of D about AB and AC, respectively. Points
E1 and E2 lie on line BC and satisfy D1E1 ‖ AB and D2E2 ‖ AC. Prove that
D1, D2, E1, E2 lie on a circle whose center lies on the circumcircle of △ABC.

(Patrik Bak)

Solution. We first observe that E1E2D2D1 is a convex quadrilateral: As angles 6 B
and 6 C are acute, D is an interior point of side BC and similarly the feet of the
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altitudes from D in triangles ABD and ACD lie in the interiors of sides AB and AC
respectively. The two mentioned feet together with B and C hence form a convex
quadrilateral and homothety with center D and coefficient 2 maps it to E1E2D2D1

(Fig. 1). Hence E1E2D2D1 is also convex.

B C

A

D

D1

D2

E1 E2

ββ

Fig. 1

Now we prove that E1E2D2D1 is cyclic. The given line symmetries imply
|AD1| = |AD| = |AD2| and thus A is the circumcenter of triangle D1DD2. Since
D1 and D2 are separated by line AD, we have 6 D1D2D = 1

2
6 D1AD from the in-

scribed angle theorem. It follows that 6 D1D2D = 6 D1AB = 6 DAB = 90◦ − 6 B
(see Fig. 1). From 6 DD2E2 = 90◦ we infer

6 D1D2E2 = 6 D1D2D + 6 DD2E2 = (90◦ − 6 B) + 90◦ = 180◦ − 6 B.

On the other hand, we have 6 E2E1D1 = 6 B and therefore E1E2D2D1 is indeed a
cyclic quadrilateral.

The center S of its circumcircle is the intersection of perpendicular bisectors of
E1D1 and E2D2. Since triangle DE2D2 is right with right angle at D2 and C is the
midpoint of DE2, the perpendicular bisector of E2D2 passes through C (Fig. 2) and is
perpendicular to AC. Analogously, the perpendicular bisector of E1D1 passes through
B and is perpendicular to AB. The two bisectors thus meet on the circumcircle of
ABC at the point diametrically opposite to A.

B C

A

D

D1

D2

E1 E2

Fig. 2

2



Another solution. We show in a different way that 6 DD2D1 = 90◦ − 6 B which
implies that E1E2D2D1 is cyclic. Points E1, E2 are images of B, C respectively in
the homothety with center in D and coefficient 2. Denoting A′ image of A in this
homothety (Fig. 3) we observe that A′, D1, E1 are collinear and so are A

′, D2, E2.

B C

A

D

A′

D1

D2

E1 E2

Fig. 3

QuadrilateralA′D1DD2 is cyclic because of right angles A
′D1D andA

′D2D and hence
6 DD2D1 = 6 D1A

′D. Since D1A
′ ‖ BA we have also 6 D1A

′D = 6 BAD = 90◦ − 6 B
and we are done.

Another solution. Let us define A′ as in the previous solution. (Fig. 3). Euclid’s
theorem applied to right triangles A′E1D and A

′E2D yields |A′D|2 = |A′D1| · |A′E1|
and |A′D|2 = |A′D2| · |A′E2|. Hence

|A′D1| · |A′E1| = |A′D2| · |A′E2|

and as none of the segments D1E1 and D2E2 contain A
′, quadrilateral D1E1E2D2 is

cyclic by power of a point.

Another solution. It suffices to prove that the perpendicular bisectors of D1E1,
D2E2, E1E2 all pass through the point A

′ that lies on the circumcircle of triangle
ABC, diametrically opposite to A. For the first two perpendicular bisectors, this
assertion can be proved as in the final part of the first solution.

Arguing about the third bisector, let P be the perpendicular projection of A′

onto BC and observe that D is the projection of A. Since AA′ is a diameter of the
circumcircle of △ABC, points D and P are symmetric about the midpoint of BC.
We also have E1B = BD and DC = CE2, hence E1P = E1B + BP = BD +DC =
PC + CE2 = PE2 and we may conclude.

Remark. There are other possible solutions of this problem using the homothety
with center in D and coefficient 2. Then one can reformulate the first assertion
naturally as to prove that the orthogonal projections of D onto sides AB and AC lie
together with B and C on a circle. The best way to prove the second assertion is to
use Fig. 2.
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3. Find all non-negative integers m, n such that |4m2−nn+1| 6 3. (Tomáš Jurík)

Solution. If m = 0, then the examined relation is equivalent to nn+1 6 3. This is
true for n = 0 and n = 1, whereas for n > 2 we have nn+1 > 8. Thus we get two
solutions (m,n) = (0, 0) a (m,n) = (0, 1).

For m = 1 we have the inequality |4 − nn+1| 6 3. We can see that n = 0 is not
a solution and n = 1 is. For n > 2 we have |4 − nn+1| = nn+1 − 4 > 4. So we get
another solution (m,n) = (1, 1).

From now on we assume m > 2 and rewrite the given inequality into the form
4m2 = nn+1 + a, where a is an (unknown) integer, whose absolute value doesn’t
exceed 3. We will distinguish cases when a = 0, |a| ∈ {1, 3} and |a| = 2.

First, assume 4m2 = nn+1. The left-hand side of the equation is an even square
of an integer. This must be true for the right-hand side, therefore n must be positive
and even; let n = 2k. Then nn+1 = (2k)2k+1, and since the exponent 2k + 1 is odd,
this is a perfect square only when its base 2k is be a perfect square, that is, when
2k = r2, where r is a positive integer. Clearly r must be even; let r = 2l. Then
k = 2l2 and n = 2k = 4l2, where l is a positive integer. Since m is positive, the
equation 4m2 = nn+1 gives

m =

√

nn+1

4
=

(
√
4l2

)4l2+1

2
=

(2l)4l
2
+1

2
= l · (2l)4l2 .

In conclusion, for every positive integer l we have the solution (m,n) = (l(2l)4l
2

, 4l2).

Consider now cases 4m2 = nn+1 ± a, where a ∈ {1, 3}. From the fact that the
right-hand side of the equation is even we conclude that nn+1 is odd, which means
that n is odd. Since m > 2, we have 4m2 > 16, so we can rule out n = −1. Let
n = 2k + 1, where k is a non-negative integer. Then we have

4m2 = n2k+2 ± a,

(2m+ nk+1)(2m− nk+1) = ±a.

Number ±a needs to be expressible as a product of two integers whose sum is
equal to (2m+nk+1)+(2m−nk+1) = 4m > 8. At least one of them is greater than 3,
which cannot be true, because the only divisors of ±a are numbers −3, −1, 1, 3.

We’re left to examine the last case 4m2 = nn+1 ± 2. From this equation we can
see that n is not equal to 0 and is even, thus its power nn+1 with the exponent greater
than 1 is divisible by 4, as well as 4m2 on the left hand side. Thus the equation has
no solutions.

Conclusion. All the solutions of the inequality are (0, 0), (0, 1), (1, 1) and in-

finitely many solutions of the form (m,n) = (l(2l)4l
2

, 4l2), where l is an arbitrary
positive integer.
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4. Let n > 3 be odd and consider a set M of n positive integers. Show that the
number of pairs (p, q) of distinct elements from M , such that the arithmetic
mean of p and q is an element of M , is at most 1

2
(n− 1)2.
(Martin Panák, Patrik Bak)

Solution. Denote by x1 < x2 < ... < xn the elements ofM . Consider a fixed index i.
If xi is the arithmetic mean of the elements xj < xk, then clearly xj < xi < xk. Thus,
the value of j could be 1, . . . , i − 1 (i − 1 options), whereas the value of k could be
i+1, i+2, . . . , n (n− i options). Furthermore, if xi is the arithmetic mean of distinct
pairs xj1 < xk1

and xj2 < xk2
, then j1 6= j2 and k1 6= k2 (if, for example, j1 = j2,

we easily have k1 = k2, which is a contradiction with the fact that we picked distinct
pairs). Thus, every possible value for j or k could be picked at most once, which
means that the number of unordered pairs p, q of distinct numbers of M , for which
xi =

1

2
(p + q) with a given index i, is at most min{i − 1, n − i}. We are looking for

ordered pairs, thus there are at most 2min{i− 1, n− i} such pairs.
Since n is odd and greater than 1, we can write n = 2k+1, where k is a positive

integer. If we sum our estimates for every possible value of the index i, i.e. i =
1, 2, . . . , n, we get that the examined number of pairs is at most

2(min{0, 2k}+min{1, 2k − 1}+ · · ·+min{k, k}+ · · ·+min{2k, 0}) =
= 2(0 + 1 + . . .+ (k − 1) + k + (k − 1) + (k − 2) + . . .+ 1 + 0) =

= 2(1 + (k − 1)) + 2(2 + (k − 2)) + · · ·+ 2((k − 1) + 1) + 2k = k · 2k.

Hence we are done, since 1

2
(n− 1)2 = 2k2.

Remark 1. If n = 2k, we can easily find that the number of examined pairs is at
most

2(min{0, 2k − 1}+min{1, 2k − 2}+ ...+min{2k − 1, 0}) = 2k(k − 1).

We can easily verify that the uniform formula for both cases is
(

n

2

)

−
⌊

n
2

⌋

. and that
the equality is attained for example for the set M = {1, 2, . . . , n}.

Remark 2. The same proof works for real numbers instead of integers and also
for a different mean (for example geometric mean

√
pq or harmonic mean 2pq/(p+q)).

It is possible to prove the estimate even for other “asymmetric” means, e.g. 2

3
p+ 1

3
q,

though we couldn’t count the number of ordered pairs as the double of unordered
ones.

5. Given three positive real numbers o, ρ, v, construct a triangle ABC with perime-
ter equal to o, the radius of its A-excircle equal to ρ, and the length of its A-
altitude equal to v. Determine the number of solutions (non-congruent triangles)
in terms of the given lengths. (Patrik Bak)

Solution. Let P be a point on the ray opposite to BC such that BP = BA and,
similarly, let Q be a point on the ray opposite to CB such that CQ = CA. Then
PQ = o.
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Let Ia be the A-excenter of △ABC (Fig. 4). Since IaB is the bisector of angle
ABP and the triangle ABP is B-isosceles, line IaB is the perpendicular bisector of
AP . Thus, Ia lies on the perpendicular bisector of AP and similarly for AQ. Point
Ia is therefore the circumcenter of △APQ and it lies on the perpendicular bisector of
PQ too.

P Q

k

l

B
C

A

M

Ia

Fig. 4

With this insight, we can construct △ABC as follows: Let PQ be a segment
with length o and let M be its midpoint. Point Ia satisfies MIa ⊥ PQ and MIa = ρ.
Point A has to lie on a circle k with center Ia and radius IaP = IaQ and also on a line
l parallel with PQ with distance v from PQ in the opposite half-plane determined
by PQ than point Ia. Points B, C can then be constructed in many ways, for
example as the intersections of segment PQ with the perpendicular bisectors of AP ,
AQ, respectively. Any triangle ABC constructed in this way then satisfies all three
requirements.

It remains to determine the number of solutions in terms of o, ρ, v. This is the
same as asking for the number of intersections of k and l.

Let r = IaP =
√

ρ2 + (o/2)2 be the radius of k. When r > ρ + v, circle k
intersects line l at two points A1, A2 and we get two triangles A1B1C1, A2B2C2

(Fig. 5). We count them as two separate solutions since they differ e.g. in the angle
by B.

When r = ρ + v, circle k is tangent to line l, we get a single intersection A and
a single solution △ABC (by symmetry, it will be isosceles).

Finally, when r < ρ + v, circle k and line l do not intersect and there is no
solution.

To summarize:
√

ρ2 + 1

4
o2 > ρ+ v: . . . 2 solutions,

√

ρ2 + 1

4
o2 = ρ+ v: . . . 1 solution,

√

ρ2 + 1

4
o2 < ρ+ v: . . . 0 solutions.
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6. Let n > 3 be a positive integer. Tom and Jerry play a game on a regular n-gon
with one vertex marked as a trap. Initially, Jerry places a piece at one vertex of
the n-gon. In each subsequent step, Tom says a positive integer and Jerry moves
the piece by the given number of vertices either clockwise or counterclockwise.
Find all n > 3 such that Jerry can place the piece and then move it in such a way
that it never lands in the trap. How does the answer change if Tom knows n but
does not see where Jerry placed the piece and how he moves it? (Pavel Calábek)

Solution. Label the vertices 0, 1, . . . , n− 1 clockwise such that the trap is at vertex
0. If the piece is at a and Tom says b, Jerry can move the piece to vertices whose
number gives remainder a− b or a+ b when divided by n.

First we show that when n has an odd divisor d then Jerry wins by using the
following strategy: Place the piece at a vertex not divisible by d and keep moving
it such that this property is preserved. Clearly, for any odd d, at least one vertex
not divisible by d exists (e.g. vertex 1) and no such vertex is a trap. It remains
to show that if d ∤ a then either d ∤ a − b or d ∤ a + b. Assume otherwise. Then
d | (a+ b) + (a− b) = 2a and since d is odd, we conclude d | a, a contradiction.

On the other hand, we show that when n = 2k is a power of 2 then Tom wins
regardless of whether he sees Jerry’s moves or not. We say that a non-trap vertex of
the n-gon has degree d if 2d is the highest power of 2 dividing d. Further, we set the
degree of node 0 equal to k.

First we describe Tom’s strategy when he does see Jerry’s moves. The strategy
is simple: If the piece is currently at a vertex with degree d then Tom says 2d. The
key observation is that the degree increases at each step: Indeed, if the current vertex
is 2d · q (q odd) then the new one will be 2d · q ± 2d = 2d · (q ± 1) which is divisible
by 2d+1 regardless of the sign. Thus the new vertex always has a higher degree than
the current one and the trap is eventually reached.

Finally, we describe Tom’s strategy when he does not see Jerry’s moves. All
Tom’s moves will be of the form 2i for some integer i < k. The key observation here
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is that when the current vertex has degree d < i then after Tom says 2i then the new
vertex again has degree d: Indeed, if i > d then, for any odd number q, the remainder
of 2d · q ± 2i when divided by 2k is divisible by 2d but not by 2d+1.

Formally, Tom’s strategy will be a sequence (Sk−1, Sk−2, . . . , S0) of shorter sub-
sequences Si which are themselves defined by a downward induction as follows:

(i) S(k − 1) consists of a single move 2k−1.
(ii) For a given i ∈ {k − 2, k − 1, . . . , 1, 0}, the subsequence Si consists of a move

2i followed by the (already defined) subsequences Sk−1, Sk−2, . . . , Si+1 one after
the other.

As an example, when k = 4 (that is, n = 16), Tom’s strategy consists of the
moves

(23, 22, 23, 21, 23, 22, 23, 20, 23, 22, 23, 21, 23, 22, 23).

It remains to show that this is a valid strategy for Tom. In fact, we prove a
slightly stronger claim: A sequence (Sk−1, . . . , Si) works if Jerry places the piece at
any vertex with degree d > i. We proceed by strong downward induction on i. If
i = k − 1 then the claim is clear. Fix i < k − 1 and assume the claim holds for all
i′ ∈ {i+ 1, . . . , k − 1}. Assume Jerry placed the piece at a vertex with degree d > i.
All the moves within the prefix (Sk−1, Sk−2, . . . , Sd+1) are of the form 2j for some
j > d, hence, by the above observation, the degree doesn’t change. The first move of
subsequence Sd is 2

d, hence the degree increases to some d′ > d. The remaining part
of Sd consists of Sk−1, Sk−2, . . . , Sd+1. By the induction hypothesis, Tom wins after
Sk−1, Sk−2, . . . , Sd′ at the latest.

Conclusion. When n is a power of two, Tom wins regardless of whether he sees
the moves. Otherwise, Jerry wins.
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First Round of the 68th Czech and Slovak

Mathematical Olympiad

(December 11th, 2018)

MO
1. Find all primes p, q such that the equation x2+px+q = 0 has at least one integer
root. (Patrik Bak)

Solution. Denote the integer root by a. Then a2 + pa + q = 0, hence a | q which
implies a ∈ {±1,±q}. We distinguish those four cases.
⊲ If a = −1 then p− q = 1, hence (p, q) = (3, 2).
⊲ If a = 1 then p+ q + 1 = 0, which has no solution.
⊲ If a = q then q2+pq+q = 0 and after dividing by (positive) q we get q+p+1 = 0
which has already been covered.

⊲ If a = −q then q2 − pq + q = 0 and after dividing by q we get p − q = 1 which
has already been covered.
The only candidate is (p, q) = (3, 2) and we easily check that it is indeed a valid

solution.

Another solution. Let x1, x2 be the roots of the equation. By Viète relations we
get x1 + x2 = −p and x1x2 = q. The first equation implies that if one root is an
integer then so is the other one. The second equation then implies that the roots
are either 1 and q or −1 and −q. In the first case we don’t get any solutions, in the
second case we require p− q = 1 which gives a unique solution (p, q) = (3, 2) among
primes.

2. Let ABC be an acute triangle with AB < AC. Points D, E on the rays AB, AC,
respectively, satisfy AD = AC and AE = AB. Let F be the point of intersection
of the line passing through D perpendicular to AD and the line passing through
E perpendicular to AE. Show that AF ⊥ BC. (Patrik Bak)

Solution. From the assumption AB < AC we know that D lies on the ray opposite
to BA, whereas E lies inside the segment AC. Triangles ABC, AED are congruent,
since they share an angle at A and the definition of D and E gives AB = AE and
AC = AD. This congruence gives 6 AED = 6 ABC = β < 90◦, since triangle ABC
is acute. Together with 6 AEF = 90◦, this means that 6 DEF = 90◦ − β (Fig. 1).
Quadrilateral DFEA is cyclic, since both its angles at D and E are right. Then we
have 6 DAF = 6 DEF = 90◦ − β. Denoting by P the intersection point of AF and
BC, in triangle ABP we then have 6 PBA = β and 6 BAP = 6 DAF = 90◦ − β,
hence 6 APB = 90◦, which means AF ⊥ BC.

Another solution. Denote by P the perpendicular projection of F onto BC. Convex
quadrilaterals BDFP and CEPF are cyclic because of the right angles atD, P and E.
Furthermore, quadrilateral BDCE is cyclic (Fig. 2), since it is an isosceles trapezoid,
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because of the perpendicular bisectors of BE and CD being the internal angle bisector
of 6 BAC. The radical axes of pairs of circumcircles of quadrilaterals BDFP , CEPF
and BDCE are lines BD, CE, PF , therefore these three lines are concurrent, which
means A, P , F are collinear, hence AF ⊥ BC.

3. Given a positive integer n, in each step we modify it as follows: If n is even we
divide it by 2; if it is odd we add 3 to it. Find all positive integers for which we
get a number 1 after a finite number of steps. (Ján Mazák)

Solution. Let a > 1 be an integer. If it is even, then after one step we get 1

2
a. If it

is odd, then we get a+3, which is even, so in the next step we get 1

2
(a+3). Because

of the assumption a > 1 we have 1

2
a < a, and if a > 3, then even 1

2
(a+ 3) < a. This

shows that every number a > 1 except for a = 3 will decrease after at most two steps.
Thus, starting from any number, in a finite number steps we reach either 1 (and then
cycle 1 → 2 → 4 → 1) or 3 (and then cycle 3 → 6 → 3).

Observe that our step preserves the divisibility by 3: Since a gives either a + 3,
or 1

2
a, the number after one step is divisible by 3 if and only if the number before the

step is. From this we see that if the initial number is divisible by 3, then we cannot
ever get 1 (in fact, according to the first paragraph, we would always get 3). On the
other hand, if we initially have a number not divisible by 3, we cannot get a number
divisible by 3, i.e. we will get 1.

In conclusion, the answer is the positive integers that are not divisible by 3.

Remark. The problem resembles the first problem of the IMO 2017.
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Second Round of the 68th Czech and Slovak

Mathematical Olympiad

(January 15th, 2019)

MO
1. Let n be a positive integer. Tom and Jerry play a game on a board consisting
of a row of 2 018 cells. Initially, Jerry places a piece at some cell. In each
subsequent step, Tom says an integer from the interval [1, n] and Jerry moves
the piece by the said number of cells, by his choice either to the left or to the
right. Tom wins whenever Jerry cannot make a move. Find the smallest n for
which Tom can pick numbers such that he wins after a finite number of moves.

(Josef Tkadlec)

Solution. We will show the smallest such n is 1010. Suppose n 6 1009. Then Jerry
has the following simple strategy: He places the piece at an arbitrary cell and then
he moves it so that he does not immediately lose. He would not be able to make such
a move only if there were at most n− 1 cells to the left and at most n− 1 cells to the
right. In that case there would be at most 2(n− 1) + 1 = 2n− 1 6 2017 cells, which
is a contradiction.

Next assume n = 1010. Label the cells 1, 2, . . . , 2018 left to right and denote by
k the current position of the piece. If k ∈ {1009, 1010}, Tom immediately wins by
saying 1010. If k < 1009, Tom can say 1009− k. If Jerry moves right, the piece lands
at a cell 1009 and Tom wins. If Jerry moves left, he moves the piece closer to the left
border. Since the board is finite, Jerry cannot move left indefinitely and eventually
he will have to move right and lose in the next step. Similarly, if the piece is at a cell
k > 1010, Tom wins by always saying k − 1010.

Another solution. We describe another strategy for Tom when n = 1010. This
strategy forces a win in 3 steps. As before, label the cells 1, 2, . . . , 2018 left to right
and denote the current position of the piece by k. If k ∈ {1009, 1010}, Tom says 1010
and wins immediately. If k 6 504, Tom says 1009 − k. Since k − (1009 − k) < 0,
Jerry has to move right and loses in the next step. Likewise, if k > 1515, Tom
says k − 1010 and forces Jerry to move to 1010 and lose in the next step. Next, if
505 6 k 6 1008, Tom says 1010, which forces Jerry to move right and place the piece
at a cell k′ satisfying 1515 6 k′ 6 2018, from which Tom can force a win in two steps
as described above. Finally, if 1011 6 k 6 1514, Tom says 1010, which forces Jerry
to move left to a cell k′ satisfying 1 6 k′ 6 504. Tom again wins in two more steps.

Another solution. We describe yet another strategy for Tom when n = 1010. The
strategy works even when Tom does not see the board. The strategy is simple: Tom
keeps alternately saying 1010, 1009. We argue that this strategy makes Tom win.

If k ∈ {1009, 1010}, the first move makes Tom win. If k < 1009, there is only
one way for Jerry to avoid losing in the first two steps: He has to first move right and
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then move left. This moves the piece to k′ = k + 1. Likewise, if k > 1010, Jerry has
to first move left and then right (or lose immediately). This yields k′ = k− 1. Either
way, after every two steps, Jerry either loses or moves the piece closer to the middle,
where he eventually loses.

2. Find all pairs of integers (m,n) that satisfy the equation nn−1 = 4m2 + 2m+ 3.
(Tomáš Jurík)

Solution. Clearly, the right-hand side is an odd integer, hence nn−1 is also an odd
integer which implies that n is odd, n − 1 is even and finally nn−1 is a square of an
integer.

For m > 1, the inequalities (2m)2 < 4m2 + 2m + 3 < (2m + 1)2 imply that the
equation does not have a solution.

Form < −1, we have the reversed inequalities (2m)2 > 4m2+2m+3 > (2m+1)2,
so there are no solutions in this case either.

The only remaining options are m ∈ {−1, 0, 1}; by checking each of them we find
the only solution (m,n) = (1, 3).

3. Let ABC be a triangle with 6 BAC = 90◦. Points D, E on its hypotenuse BC
satisfy CD = CA, BE = BA. Let F be such a point inside △ABC that DEF
is an isosceles right triangle with hypotenuse DE. Find 6 BFC. (Patrik Bak)

Solution. We show that F is the incenter of△ABC. Simple angle-chasing in△BFC
then yields 6 BFC = 180◦ − 1

2
B − 1

2
C = 135◦.

Since BA = BE, triangle BAE is isosceles and 6 BAE = 90◦ − 1

2
6 B. Similarly,

6 DAC = 90◦ − 1

2
6 C and simple angle-chasing gives 6 DAE = 45◦ (Fig. 1). This

means that F is the circumcenter of △ADE: Indeed, it lies in the same half-plane
determined by BC as A, and satisfies both 6 DFE = 90◦ = 2 · 45◦ = 26 DAE and
FE = FD.

Being the circumcenter of △ADE, point F lies on the perpendicular bisectors of
AE and AD which coincide with angle bisectors of 6 B, 6 C. Hence we are done.

A

B CD E

F

β γ

Fig. 1

Another solution. We present another way to show that F is the incenter of△ABC.
Denote by M the midpoint of DE. Using the notation BC = a, CA = b, AB = c we
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compute DE = b+ c− a (Fig. 2) and

BM = BD +DM = (a− b) + 1

2
(b+ c− a) = 1

2
(a+ c− b),

hence M is the point of contact of the incircle of △ABC with BC. Since △DEF
is isosceles and right, we further have MF = MD = 1

2
DE = 1

2
(b + c − a) which,

according to a well-known formula, is the radius of an incircle of a right triangle.
Thus F is the incenter and we conclude as in the first solution.

δ ε

A

B CD EM

F
c b

a− b a− cb+c−a
2

b+c−a
2

b+c−a
2

Fig. 2

Remark. Once the contestant formulates a hypothesis that F is the incenter of
△ABC, there are many other ways to prove it.

4. Find the maximal value of a2 + b2 + c2 for real numbers a, b, c such that a+ b,
b+ c, c+ a all lie in the interval [0, 1]. (Ján Mazák)

Solution. By symmetry of the problem, we can WLOG suppose a > b > c.
Then both b − c and b + c are non-negative (by our assumptions), hence their

product will also be non-negative and b2 > c2. Analogously, both 1−b−a and 1−b+a
are non-negative and (1− b)2 > a2.

Thus we have a2+b2+c2 6 (1−b)2+2b2 = 1−b(2−3b). The original restrictions
on a, b, c also impose certain restrictions on b: we must have 1 > a + b > 2b and
2b > b + c > 0, hence b ∈ [0, 1

2
]. But for b in this interval it is clearly true that

b(2−3b) > 0, hence a2+b2+c2 6 1. This value is attained e.g. for (a, b, c) = (1, 0, 0).

Remark. Note that we are maximizing a convex function on a convex set, there-
fore it is sufficient only to consider the boundary values where a+b, b+c, c+a ∈ {0, 1}.
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Final Round of the 68th Czech and Slovak

Mathematical Olympiad

(March 24–27, 2019)

MO
1. Find all triplets (x, y, z) of real numbers satisfying

x2 − yz = |y − z|+ 1,

y2 − zx = |z − x|+ 1,

z2 − xy = |x− y|+ 1.
(Tomáš Jurík)

Solution. The system is symmetric, hence without loss of generality we can assume
x > y > z. Removing the absolute values we get

x2 − yz = y − z + 1, (1)

y2 − zx = x− z + 1, (2)

z2 − xy = x− y + 1. (3)

Subtracting (1) and (2), resp. (2) and (3) and rewriting we obtain

(x− y)(x+ y + z + 1) = 0,

(y − z)(x+ y + z − 1) = 0.

This implies that x, y, z can not be all mutually different. However, they can’t be
all equal either as this would yield 0 = 1 in the original system. Thus precisely two
of them are equal and we get two cases: Either x = y > z and x + y + z = 1, or
x > y = z and x+ y + z = −1.

Observe that (x, y, z) is a solution if and only if (−z,−y,−x) is a solution, thus
it suffices to solve the first case x = y > z and x + y + z = 1. Then we have
z = 1 − 2x. Plugging this into (1) we obtain x(3x − 4) = 0, hence x = 0 or x = 4

3
.

This corresponds to triples (x, y, z) equal to (0, 0, 1) and
(

4

3
, 4

3
,− 5

3

)

. The first triplet
violates the assumption x > y > z, the other one indeed is a solution to the original
system.

Together with the symmetries we discarded along the way, this gives 6 solutions:

(4

3
,
4

3
,−5

3

)

,
(

−5

3
,
4

3
,
4

3

)

,
(4

3
,−5

3
,
4

3

)

,

(5

3
,−4

3
,−4

3

)

,
(

−4

3
,−4

3
,
5

3

)

,
(

−4

3
,
5

3
,−4

3

)

.
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To summarize, there are two solutions when 1 6 a/b 6 1

2
(1 +

√
5) and four solutions

when 1

2
(1 +

√
5) < a/b.

3. Let a, b, c, n be positive integers such that the following conditions are met:
(i) every two of the numbers a, b, c, a+ b+ c are coprime;
(ii) number (a+ b+ c)(a+ b)(b+ c)(c+ a)(ab+ bc+ ca) is a perfect n-th power.
Prove that number abc can be expressed as a difference of two perfect n-th powers.

(Patrik Bak)

Solution. First we show that the numbers A = (a + b + c)(ab + bc + ca) and B =
(a + b)(b + c)(c + a) are coprime: Assume the opposite. Then there is a prime p
that dives both A and B. Since p | B, it divides at least one of the numbers a + b,
b + c, c + a, WLOG assume it is a + b. Then it cannot hold p | a + b + c, since
then we would have p | c, which contradicts assumption (i). Thus we must have
p | ab+ bc+ ca = ab+ c(a+ b), from which we have p | ab, so p divides at least one of
the numbers a, b, which together with p | a+ b means that p divides both numbers a
and b, which is, again, a contradiction with (i).

Since A, B are coprime and their product AB is a perfect n-th power, both A
and B are perfect n-th powers. But abc = A − B, which shows that abc can indeed
be expressed as a difference of two perfect n-th powers.

Remark. Triple (a, b, c) = (341, 447, 1235) meets the conditions for n = 2.

4. Let ABC be an acute triangle. Point P lies on the ray opposite to BC such
that AB = BP . Similarly, point Q lies on the ray opposite to CB such that
AC = CQ. Let J be the center of the A-excircle of triangle ABC and D, E its
tangency points with lines AB, AC, respectively. Suppose that rays opposite to
DP and EQ meet at F 6= J . Prove that AF ⊥ FJ . (Patrik Bak)

Solution. Since points A, D, E, J lie on a circle with diameter AJ , it suffices to
prove that F lies on this circle too (Fig. 2). Denote the tangency point of the excircle
and the side BC by G. From AB = BP and BD = BG we infer △ABG ∼= △PBD
(SAS) and similarly △ACG ∼= △QCE. A straightforward angle-chasing then gives

| 6 AEF | = 180◦ − | 6 CEQ| = 180◦ − | 6 CGA| = | 6 BGA| = | 6 BDP | = | 6 ADP |,

thus F lies on the circumcircle of △ADE as required.

Remark. Alternatively, after observing△ABG ∼= △PBD and△ACG ∼= △QCE,
we can prove that ADFE is cyclic by showing that the sum of interior angles by A
and F equals 180◦. This is again just angle-chasing.

5. Prove that there are infinitely many integers that cannot be expressed in the form

2a + 3b − 5c,

where a, b, c are non-negative integers. (Ján Mazák, Tomáš Bárta)

Solution. We will show that the examined expression never gives a remainder 7 when
divided by 12. The remainders of numbers 2a, 3b and −5c when divided by 12 are
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A

B C

G

D

E

P Q

J F

Fig. 2

in the sets {1, 2, 4, 8}, {1, 3, 9}, and {−1,−5}, respectively. For every sum s of three
numbers from these sets it holds that 1 + 1− 5 6 s 6 8 + 9− 1, that is −3 6 s 6 16.
The only possible value of s having a remainder 7 when divided by 12 is therefore
s = 7. However, if we pick −1 from the third set, we must pick numbers with a sum 8
from the first two, which is clearly not possible. Similarly we cannot pick −5 either,
which proves that the given expression cannot be a number of the form 12k + 7,
where k is an integer, and there are infinitely many such numbers.

Remark. It is readily checked that any other remainder modulo 12 can be at-
tained. It is also true that for any n < 12 the examined expression attains every
possible remainder when divided by n. On the other hand, there are other n’s for
which there is a remainder that is not attained. The smallest such n > 12 is 20 and
the impossible remainders are 11, 13 and 15.

Another solution. Let us examine the remainders of the expression when divided
by 20. We will show that some odd remainder cannot be attained. The remainders
of numbers 3b and −5c when divided by 20 are numbers from the sets {1, 3, 7, 9}
and {−1,−5}, respectively. Sums of two numbers from these sets attain at most 4·2 =
8 distinct values and all of them are even. Number 2a has an odd remainder only for
a = 0, hence the whole expression 2a + 3b − 5c can have at most 8 odd remainders,
that is, there exist at least 2 odd remainders that are not attained.

Remark. There are, in fact, three such remainders, specifically 11, 13 and 15.
On the other hand, one can check that any even remainder can be attained. (All the
remainders that cannot be attained for n 6 30 are visualized in the following schema.)
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2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12: 7
13:
14:
15:
16:
17:
18:
19:
20: 11 13 15
21:
22:
23:
24: 7 11 13 15 17 19
25:
26: 13 17 19 21
27:
28:
29:
30: 11 13 19 25

6. Find all positive integers n for which an n × n table can be filled with integers
1, 2, . . . , n2, each of them appearing once, so that the 2n arithmetic means of the
numbers in every row and column are all integers. (Laura Vištanová)

Solution. Our goal is to make sure that the sum of numbers in every row and column
is divisible by n. Thus we will restrict ourselves to filling the table with numbers
0, 1, . . . , n− 1, where each of them will be used exactly n times. We will consider the
following cases:

⊲ n is odd. Consider the table

0 1 2 . . . n− 1
0 1 2 . . . n− 1
...
...
...
. . .

...

0 1 2 . . . n− 1

Every column contains n equal numbers hence their sums are divisible by n. The
sum of every row is equal to 0+1+ · · ·+(n−1) = 1

2
n(n−1), which is also a multiple

of n, since n is odd.
⊲ n = 4k for some positive integer k. In this case we split the table 4k×4k into 4k2

squares of a size 2× 2 and consider the following pattern:

x 4k − x
4k − x x

18



We need to place exactly 2k of such squares for every x = 1, 2, . . . , 2k − 1 and
exactly k of them for x = 2k. We are left with zeroes which we place into the k
remaining squares. Such a filling of the table will meet the required condition, since
all the 2× 2 squares have the sum of its rows and columns divisible by 4k and their
placement in the original table will not affect this divisibility.

⊲ n = 4k + 2 for some non-negative integer k. For k = 0 (or n = 2) it is easy to
see the required filling does not exist. Let k > 1. In this case, we fill the left-top
4× 4 subtable like this:

1 4k + 1 0 0
2k 2k + 2 0 0

2k + 1 0 2k 1
0 2k + 1 2k + 2 4k + 1

We see that so far the sum of every row and column is divisible by 4k + 2. The
rest of the table can then be divided into 2× 2 squares and, similarly to the previous
example, filled with the pattern

x 4k + 2− x
4k + 2− x x

We need exactly 2k of such squares for both x = 1 and x = 2k, exactly k such
squares for x = 2k + 1, and exactly 2k + 1 such squares for every x = 2, . . . , 2k − 1.
Clearly, this filling ensures that every row and column has the sum of its numbers
divisible by 4k + 2. Now we just put the remaining zeroes into the k − 1 remaining
2× 2 squares, which does not change any sum.

The required filling exists for every positive integer n distinct from 2.

Another solution. We will show alternative solutions for the cases n = 4k and
n = 4k + 2, where k is a positive integer.
⊲ n = 4k:

1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 2k 2k
1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 2k 2k
...

...
...

...
. . .

...
...

...
...

1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 2k 2k
1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 0 0
1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 0 0
...

...
...

...
. . .

...
...

...
...

1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 0 0
1 4k − 1 2 4k − 2 . . . 2k − 1 2k + 1 0 0

We see that we can pair up the numbers in the rows into pairs with a sum divisible
by 4k, hence the row sums are divisible by 4k. In the first 4k − 2 columns we have
exactly 4k equal numbers, so their sum is a multiple of 4k too. The sums in the last
two columns are equal to 2k · 2k = 4k2, which is also divisible by 4k.
⊲ n = 4k + 2.
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Notice that if we have arbitrary numbers a1, a2, . . . , al, where each one can be
used exactly l times, then we can place them into an l × l table so that the sum in
every row and column is be the same:

t(a1, a2, . . . , al) =

a1 a2 . . . al−1 al
a2 a3 . . . al a1
...
...
. . .

...
...

al−1 al . . . al−3 al−2

al a1 . . . al−2 al−1

We use this construction in the following way: We split the set {0, 1, . . . , 4k+1}\
{0, 2k+1} in an arbitrary way into two disjoint sets A, B such that |A| = 2k− 1 and
|B| = 2k + 1. Now we create the following four sequences, each consisting of 2k + 1
numbers:

0, 0, A, 2k + 1, 2k + 1, A, B, B,

and for every one of them we will create a table (2k+1)×(2k+1) using the described
algorithm. Then we put these tables together into the final (4k + 2) × (4k + 2) like
this:

t(0, 0, A) t(B)
t(B) t(2k + 1, 2k + 1, A)

In such a table, every number 0, 1, . . . , 4k+1 is used exactly 4k+2 times and it is
readily checked that the sum of every row and column is divisible by 4k+2: The sum
of numbers in the sequences A and B is equal to s = 1 + · · ·+ (4k + 1)− (2k + 1) =
2k(4k+2), so half of the rows and columns have a sum 2k(4k+2) and the other half
have a sum (2k + 1)(4k + 2).
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