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26 – 28 August 2020

(First day – 26 August 2020)

1. Let 𝐴𝐵𝐶𝐷 be a parallelogram whose diagonals meet at 𝑃 . Denote by 𝑀 the
midpoint of 𝐴𝐵. Let 𝑄 be a point such that 𝑄𝐴 is tangent to the circumcircle of
𝑀𝐴𝐷 and 𝑄𝐵 is tangent to the circumcircle of 𝑀𝐵𝐶. Prove that points 𝑄, 𝑀, 𝑃
are collinear. (Patrik Bak, Slovakia)

Solution 1. Let 𝑇 be the midpoint of 𝐶𝐷. Clearly 𝑇, 𝑀, 𝑃 lie on a line parallel
to 𝐵𝐶 and 𝐴𝐷. Therefore

∠𝐴𝑇𝐵 = ∠𝐴𝑇𝑀+∠𝑀𝑇𝐵 = ∠𝑀𝐶𝐵+∠𝐴𝐷𝑀 = ∠𝑀𝐵𝑄+∠𝑄𝐴𝑀 = 180∘−∠𝐴𝑄𝐵,

which shows that 𝐴, 𝑇, 𝐵, 𝑄 are concyclic. Furthermore,

∠𝐴𝑇𝑄 = ∠𝐴𝐵𝑄 = ∠𝑀𝐶𝐵 = ∠𝐴𝑇𝑀,

which shows that 𝑇, 𝑀, 𝑄 are collinear.
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Solution 2. Let 𝑇 be the midpoint of 𝐶𝐷 and 𝑅 be the reflection of 𝑀 in 𝑇 .
Note that then triangles 𝑅𝑇𝐷 and 𝐶𝐵𝑀 are similar and hence

∠𝑀𝑅𝐷 = ∠𝑇𝑅𝐷 = ∠𝐵𝐶𝑀 = ∠𝑀𝐵𝑄 = ∠𝐴𝐵𝑄

and
∠𝑅𝑀𝐷 = ∠𝐴𝐷𝑀 = ∠𝑀𝐴𝑄 = ∠𝐵𝐴𝑄,



therefore triangles 𝑀𝑅𝐷 and 𝐴𝐵𝑄 are similar. Note that the the segments 𝑄𝑀 and
𝐷𝑇 are medians of those triangles and vertices 𝑄 and 𝐷 correspond to each other,
hence triangles 𝐴𝑀𝑄 and 𝑀𝑇𝐷 are similar. In particular, ∠𝐴𝑀𝑄 = ∠𝑀𝑇𝐷 =
180∘ − ∠𝐴𝑀𝑇 , hence 𝑇 , 𝑀 , 𝑄 are colinear.

2. Given a positive integer 𝑛, we say that a real number 𝑥 is 𝑛-good if there exist
𝑛 positive integers 𝑎1, . . . , 𝑎𝑛 such that

𝑥 = 1
𝑎1

+ · · · + 1
𝑎𝑛

.

Find all positive integers 𝑘 for which the following assertion is true:

If 𝑎, 𝑏 are real numbers such that the closed interval [𝑎, 𝑏] contains in-
finitely many 2020-good numbers, then the interval [𝑎, 𝑏] contains at least
one 𝑘-good number.

(Josef Tkadlec, Czech Republic)

Solution. We claim the answer is: All 𝑘 ≥ 2019.
First, we show that no 𝑘 ≤ 2018 belongs to the desired set. Consider the interval

𝐼 = [2019, 2020]. The numbers 𝑥𝑖 = 1+ · · ·+1+1/𝑖 (with number 1 appearing 2019
times) are all 2020-good and belong to 𝐼. On the other hand, any 𝑘-good number
𝑥 with 𝑘 ≤ 2018 satisfies 𝑥 ≤ 2018 · 1/1 < 2019. So no 𝑘 ≤ 2018 belongs to the
desired set.

Note that the following Claim holds: For any 𝑎 < 𝑏 ∈ R and any 𝑘 ∈ N, if the
half-open interval [𝑎, 𝑏) contains a 𝑘-good number then it contains an 𝑙-good number
for any 𝑙 ≥ 𝑘. Indeed, this is immediate by induction (just take 𝑛 large enough that
adding a term 1/𝑛 does not reach or exceed 𝑏).

The Claim immediately implies that all 𝑘 ≥ 2020 belong to the desired set.
Indeed, take two 2020-good numbers in [𝑎, 𝑏], say 𝑥 < 𝑦. Then 𝑥 < 𝑏, hence we are
done by the Claim.

This only leaves 𝑘 = 2019 unaccounted for. We show that it belongs to the
set. Take an infinite sequence 𝑋0 = 𝑥1, 𝑥2, . . . of 2020-good numbers in [𝑎, 𝑏] and
consider their representations 𝑥𝑖 = 1/𝑎𝑖,1 + · · · + 1/𝑎𝑖,2020, where without loss of
generality, we have 𝑎𝑖,1 ≤ · · · ≤ 𝑎𝑖,2020, for each 𝑖 = 1, 2, . . .

Consider the set 𝑆1 = {𝑎𝑖,1|𝑖 = 1, 2, . . . } of the first (largest) terms of the rep-
resentations. If it is finite, then some number 𝑏1 is used as 𝑎𝑖,1 for infinitely many
𝑥𝑖. Focus on the (still infinite) subsequence 𝑋1 = {𝑥𝑖|𝑎𝑖,1 = 𝑏1} and consider the
set 𝑆2 = {𝑎𝑖,2|𝑥𝑖 ∈ 𝑋1}. If it is finite, proceed as before, restricting to an infi-
nite set 𝑋2 with fixed first two terms. At some point, the set 𝑆𝑗 constructed in
this way will be infinite (at the latest for 𝑗 = 2020 after we have found infinitely
many sequences agreeing on the first 𝑗 − 1 = 2019 terms). At this point, consider
𝐵 = 1/𝑏1 + · · · + 1/𝑏𝑗−1 (if 𝑗 = 1, the sum is empty and we set 𝐵 = 0) and take
infinitely many 𝑦1, 𝑦2, . . . ∈ 𝑋𝑗−1 whose representations agree on the first 𝑗 −1 terms
1/𝑏1, . . . , 1/𝑏𝑗−1 and whose 𝑗-th terms are pairwise different, say 𝑐1 < 𝑐2 < . . . Then



𝑦𝑖 ≤ 𝐵 + (2020 − 𝑗) · 1/𝑐𝑖 ≤ 𝐵 + 2020/𝑖. Since 𝑦𝑖 ≥ 𝑎 for each 𝑖 ∈ N, we have 𝐵 ≥ 𝑎.
Moreover, 𝐵 ≤ 𝑦1 ≤ 𝑏, hence 𝐵 is a 2019-good number contained in [𝑎, 𝑏].

3. The numbers 1, 2, . . . , 2020 are written on the blackboard. Venus and Serena
play the following game. First, Venus connects by a line segment two numbers such
that one of them divides the other. Then Serena connects by a line segment two
numbers which has not been connected and such that one of them divides the other.
Then Venus again and they continue until there is a triangle with one vertex in 2020,
i.e. 2020 is connected to two numbers that are connected with each other. The girl
that has drawn the last line segment (completed the triangle) is the winner. Which
of the girls has a winning strategy? (Tomáš Bárta, Czech Republic)

Solution. We show that Venus has a winning strategy. Let us call a pair (𝑘, 𝑙)
admissible if 𝑘, 𝑙 ≤ 2019 and (𝑘, 𝑙) can be connected without causing immediate win
of the rival. It means, 𝑘 divides 𝑙 or vice versa, (𝑘, 𝑙) has not been connected yet
and if both 𝑘 and 𝑙 are divisors of 2020, then neither of (𝑘, 2020), (𝑙, 2020) has been
connected.

The idea is as follows: we show that there is an odd number of admissible pairs
in the beginning and this number decreases by an odd number in each move with
the only exceptions of moves (2020, 1), (2020, 4), and (2020, 505). Therefore, Venus
must guarantee that none or two of these three moves are played in the game. Then
she has in each turn at least one admissible pair to play (odd number of them) and
she cannot loose.

So, the winning strategy for Venus is as follows: In her first move Venus plays
(1, 2) (so, (2020, 1) cannot be played by Serena). In all further turns Venus follows
the following rules (in this order of priority) which implies that none or both of the
pairs (2020, 4), (2020, 505) will be played:

1. if Serena draws second edge of a triangle, Venus completes the triangle and
wins,

2. if Serena plays (2020, 4), Venus plays (2020, 505) and vice versa (then both
these pairs will be played),

3. if Serena plays for the first time a pair from 𝑃4 or 𝑃505, Venus plays a pair
from the other of the two sets, where

𝑃𝑆 = {(𝑆, 𝑘), (2020, 𝑘) : 𝑘 is a divisor of 2020 and a divisor or multiple of 𝑆},

(then none of the pairs (2020, 4), (2020, 505) can be played any more),

4. otherwise, Venus plays any admissible pair. If none of the pairs from 𝑃4, 𝑃505
is connected, Venus plays any admissible pair not belonging to these sets.

It is easy to see that Venus always can play according to points 2. and 3. It
remains to show that she can follow the point 4. as well, i.e., that there are some
admissible pairs (resp. admissible pairs not belonging to 𝑃4, 𝑃505) left. To do this
let us focus on parity of admissible pairs now.



Let us first observe that if 𝑛 has a prime factorization 𝑝𝑎1
1 . . . 𝑝𝑎𝑘

𝑘 (with 𝑝𝑖 being
pairwise distinct), then 𝑛 has (𝑎1 + 1) . . . (𝑎𝑘 + 1) divisors and this number is odd
if and only if all 𝑎𝑖’s are even, i.e. 𝑛 is a perfect square. Let us denote by 𝑑(𝑛)
the number of positive divisors of 𝑛 that are strictly less than 𝑛 (call them proper
divisors). We have: 𝑛 is a perfect square if and only if 𝑑(𝑛) is even.

It is easy to see that total number of pairs that can be connected is

2020∑︁
𝑛=1

𝑑(𝑛),

which is an even number since there are 44 perfect squares less or equal to 2020 and
therefore 2020 − 44 of the numbers 𝑑(𝑛) are odd. Since 2020 = 22 · 5 · 101 has 11
proper divisors, 11 of these pairs contain 2020, the remaining odd number of pairs
are admissible.

If an admissible pair is connected, then number of admissible pairs decreases by
1. However, if a pair (2020, 𝑆) is connected, then all pairs of type (𝑆, 𝑘) belonging 𝑃𝑆

are no more admissible. We compute the number of such pairs. If 𝑆 = 2𝑎15𝑎2101𝑎3 ,
𝑎1 ∈ {0, 1, 2}, 𝑎2, 𝑎3 ∈ {0, 1}, then the number of proper divisors of 𝑆 is (𝑎1 +1)(𝑎2 +
1)(𝑎3 + 1) − 1 and number of multiples of 𝑆 larger than 𝑆 that are proper divisors
of 2020 is (2 − 𝑎1 + 1)(1 − 𝑎2 + 1)(1 − 𝑎3 + 1) − 2. So, together we have

(𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1) + (3 − 𝑎1)(2 − 𝑎2)(2 − 𝑎3) − 3 =: 𝐵

pairs which are no more admissible. Exactly one of the numbers 𝑎2 + 1, 2 − 𝑎2 is
even, exactly one of the numbers 𝑎3 + 1, 2 − 𝑎3 is even and the numbers 𝑎1 + 1,
3 − 𝑎1 have the same parity. Therefore 𝐵 is even if and only if 𝑎1 ̸= 1 and 𝑎2 = 𝑎3,
which means 𝑘 ∈ {1, 4, 5 · 101, 4 · 5 · 101} (but the last number is equal 2020). So,
we have shown that the number of admissible pairs decreases by an odd number
in each move except (2020, 1), (2020, 4), (2020, 505). Since, as we have just shown,
number of admissible pairs in 𝑃4 and 𝑃505 is even, there is always an odd number of
admissible pairs not belonging to these sets. Therefore, there is always an admissible
pair which can be played by Venus in the point 4. of the strategy. This completes
the proof.
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4. Let 𝛼 be a given real number. Find all functions 𝑓 : R → R such that

(𝑥 + 𝑦)(𝑓(𝑥) − 𝑓(𝑦)) = 𝛼(𝑥 − 𝑦)𝑓(𝑥 + 𝑦)

holds for all 𝑥, 𝑦 ∈ R. (Walther Janous, Austria)

Solution. Consider first 𝛼 = 0. By setting 𝑦 = 0 and 𝑥 ̸= 0, we infer 𝑥(𝑓(𝑥) −
𝑓(0)) = 0, that is 𝑓(𝑥) = 𝑓(0) for all real 𝑥. In the case 𝛼 = 0, all solutions are
hence given by the constant functions. Henceforth, we can assume 𝛼 ̸= 0. Plugging
in 𝑦 = −𝑥, we get 0 = 2𝛼𝑓(0) =⇒ 𝑓(0) = 0. If there exists some 𝑧 ∈ R with
𝑓(𝑧) ̸= 0, we set 𝑥 = 𝑧 and 𝑦 = 0 to obtain 𝑧𝑓(𝑧) = 𝛼𝑧𝑓(𝑧). By assumption, this
forces 𝛼 = 1. Hence, for 𝛼 ∈ R ∖ {0, 1} the only solution is the zero function. We
are only left with 𝛼 = 1. Let 𝑧 ∈ R. For 𝑥 = 𝑧 and 𝑦 = 1 we get

(𝑧 + 1)𝑓(𝑧) − (𝑧 + 1)𝑓(1) = (𝑧 − 1)𝑓(1 + 𝑧),

whereas 𝑥 = 𝑧 + 1 and 𝑦 = −1 leads to

𝑧𝑓(𝑧 + 1) − 𝑧𝑓(−1) = (𝑧 + 2)𝑓(𝑧).

We can eliminate 𝑓(𝑧 + 1) from these two equations by multiplying the first one
with 𝑧 and the second one with (𝑧 − 1). Then, addition yields

(𝑧 + 1)𝑧𝑓(𝑧) − (𝑧 + 1)𝑧𝑓(1) = (𝑧 − 1)𝑧𝑓(−1) + (𝑧 − 1)(𝑧 + 2)𝑓(𝑧)

or equivalently
2𝑓(𝑧) = 𝑧(𝑧 + 1)𝑓(1) + 𝑧(𝑧 − 1)𝑓(−1),

and therefore 𝑓(𝑧) = 𝑎𝑧2 + 𝑏𝑧 for some 𝑎, 𝑏 ∈ R. Checking in the original equation,
we see that these are indeed solutions for all 𝑎, 𝑏 ∈ R.

In summary:

∙ For 𝛼 = 0 every constant function is a solution.

∙ For 𝛼 = 1 all functions 𝑓 : R → R with 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 and 𝑎, 𝑏 ∈ R are
solutions.

∙ In all other cases, the zero function is the only solution.

5. Let 𝑛 be a positive integer and let 𝑑(𝑛) denote the number of ordered pairs of
positive integers (𝑥, 𝑦) such that

(𝑥 + 1)2 − 𝑥𝑦(2𝑥 − 𝑥𝑦 + 2𝑦) + (𝑦 + 1)2 = 𝑛.



Find the smallest positive integer 𝑛 satisfying 𝑑(𝑛) = 61. (Patrik Bak, Slovakia)

Solution. First, we modify the examined expression:

(𝑥 + 1)2 − 𝑥𝑦(2𝑥 − 𝑥𝑦 + 2𝑦) + (𝑦 + 1)2 =
(𝑥2 + 2𝑥 + 1) − 2𝑥2𝑦 + 𝑥2𝑦2 − 2𝑥𝑦2 + (𝑦 + 1)2 =

𝑥2(𝑦2 − 2𝑦 + 1) − 2𝑥(𝑦2 − 1) + (𝑦 + 1)2 + 1 =
(𝑥(𝑦 − 1) − (𝑦 + 1))2 + 1

We see that we want to find the smallest integer 𝑛 of the form 𝑡2 + 1 such that the
equation

𝑥(𝑦 − 1) − (𝑦 + 1) = ±𝑡 (1)
has exactly 61 solutions over positive integers.

We may assume 𝑡 ≥ 0. For 𝑦 = 1 we have 𝑥(𝑦 − 1) − (𝑦 + 1) = −2, for all 𝑥. So
for 𝑡 = 2 we have infinitely many solutions.

Assume that 𝑦 = 1 yields no solution of (1). Then

𝑥 = ±𝑡 + 𝑦 + 1
𝑦 − 1 = 1 + ±𝑡 + 2

𝑦 − 1 .

Clearly for 𝑡 = 0 the solutions (𝑥, 𝑦) are (1, 3), (1, 3) and for 𝑡 = 1 the solutions are
(2, 4), (4, 2), (2, 2). Assume that 𝑡 ≥ 3. Then the negative sign before 𝑡 cannot yield
a solution, since

1 + −𝑡 + 2
𝑦 − 1 ≤ 1 + −3 + 2

𝑦 − 1 = 1 − 1
𝑦 − 1 < 1.

Therefore it must hold
𝑥 = 1 + 𝑡 + 2

𝑦 − 1 .

The number of solutions of this equation is clearly equal to the number of divisors
of 𝑡 + 2. So we want to find 𝑡 such that the number of divisors of 𝑡 + 2 is exactly 61.
Since 61 is a prime, 𝑡 + 2 must be of form 𝑝60, where 𝑝 is a prime. Since we want to
minimize 𝑛, we want to minimize 𝑡, therefore take 𝑝 = 2. The minimal 𝑡 is therefore
260 − 2, which gives us 𝑛 = (260 − 2)2 + 1.

6. Let 𝐴𝐵𝐶 be an acute triangle. Let 𝑃 be a point such that 𝑃𝐵 and 𝑃𝐶 are
tangent to circumcircle of 𝐴𝐵𝐶. Let 𝑋 and 𝑌 be variable points on 𝐴𝐵 and 𝐴𝐶,
respectively, such that ∠𝑋𝑃𝑌 = 2∠𝐵𝐴𝐶 and 𝑃 lies in the interior of triangle 𝐴𝑋𝑌 .
Let 𝑍 be the reflection of 𝐴 across 𝑋𝑌 . Prove that the circumcircle of 𝑋𝑌 𝑍 passes
through a fixed point. (Dominik Burek, Poland)

Solution 1. Let 𝐵𝐶 intersect the circumcircle of 𝐶𝑃𝑌 again at 𝐾. Let 𝑠 be the
spiral similarity centered at a point 𝑇 such that 𝑠(𝑃 ) = 𝑋 and 𝑠(𝐾) = 𝑌 . Denote
𝑄 = 𝑠(𝐶). Then △𝐶𝑃𝐾 ∼ △𝑄𝑋𝑌 , so

∠𝑋𝑄𝑌 = ∠𝑃𝐶𝐾 = 180∘ − ∠𝐵𝐶𝑃 = 180∘ − ∠𝐵𝐴𝐶 = 180∘ − ∠𝑌 𝑍𝑋.



Hence the circumcircle of 𝑋𝑌 𝑍 passes through 𝑄. To finish the solution, it is enough
to prove that the position of 𝑄 does not depend on the choice of 𝑋 and 𝑌 . In fact,
we shall prove that 𝐵𝐴𝐶𝑄 is a parallelogram.

Note that ∠𝑌 𝐶𝐾 = ∠𝐴𝐶𝐵 = ∠𝑋𝐵𝑃 and

∠𝐶𝐾𝑌 = 180∘ − ∠𝑌 𝑃𝐶 = 180∘ − (360∘ − ∠𝑋𝑃𝑌 − ∠𝐶𝑃𝐵 − ∠𝐵𝑃𝑋) =
= 180∘ − 360∘ + ∠𝑋𝑃𝑌 + ∠𝐶𝑃𝐵 + ∠𝐵𝑃𝑋 =
= 180∘ − 360∘ + 2∠𝐵𝐴𝐶 + (180∘ − 2∠𝐵𝐴𝐶) + ∠𝐵𝑃𝑋 =
= ∠𝐵𝑃𝑋.

Hence △𝐾𝐶𝑌 ∼ △𝑃𝐵𝑋.
Since 𝑠(𝐾) = 𝑌 and 𝑠(𝑃 ) = 𝑋, there exists a spiral similarity 𝑠′ centered at 𝑇

such that 𝑠′(𝐾) = 𝑃 and 𝑠′(𝑌 ) = 𝑋. Since △𝐾𝐶𝑌 ∼ △𝑃𝐵𝑋, we have 𝑠′(𝐶) = 𝐵.
Let 𝑠′′ be the spiral similarity centered at 𝑇 such that 𝑠′′(𝑃 ) = 𝐵. Since 𝑠′(𝐶) =

𝐵 and 𝑠′(𝐾) = 𝑃 , we have 𝑠′′(𝐾) = 𝐶. Since 𝑠(𝐾) = 𝑌 and 𝑠(𝐶) = 𝑄, we have
𝑠′′(𝑌 ) = 𝑄. It follows that △𝑃𝐾𝑌 ∼ △𝐵𝐶𝑄.

So, ∠𝑄𝐵𝐶 = ∠𝑌 𝑃𝐾 = ∠𝑌 𝐶𝐾 = ∠𝐴𝐶𝐵 and ∠𝐵𝐶𝑄 = ∠𝑃𝐾𝑌 = ∠𝑃𝐶𝑌 =
∠𝐶𝐵𝐴. It follows that 𝐵𝐴𝐶𝑄 is a parallelogram. This finishes the proof.

Solution 2. Let 𝑄 be a point such that 𝐵𝐴𝐶𝑄 is a parallelogram. We shall prove
that the circumcircle of 𝑋𝑌 𝑍 passes through 𝑄. To that end, it is enough to prove
∠𝑋𝑄𝑌 = 180∘ − ∠𝐵𝐴𝐶 because then

∠𝑋𝑄𝑌 + ∠𝑌 𝑍𝑋 = (180∘ − ∠𝐵𝐴𝐶) + ∠𝐵𝐴𝐶 = 180∘.

Clearly,

∠𝑋𝐵𝑄 = ∠𝐵𝐴𝐶 = ∠𝑃𝐵𝐶 and ∠𝑄𝐶𝑌 = ∠𝐵𝐴𝐶 = ∠𝐵𝐶𝑃. (♡)

Note that

∠𝐶𝑃𝐵 = 180∘ − ∠𝑃𝐵𝐶 − ∠𝐵𝐶𝑃 = 180∘ − 2∠𝐵𝐴𝐶.

Hence
∠𝑋𝑃𝑌 + ∠𝐶𝑃𝐵 = 2∠𝐵𝐴𝐶 + (180∘ − 2∠𝐵𝐴𝐶) = 180∘.

It follows that 𝑃 has isogonal conjugate 𝑃 ′ in the quadrilateral 𝐵𝐶𝑌 𝑋. But (♡)
implies that 𝑃 ′ = 𝑄.

So, 𝑃 is the isogonal conjugate of 𝑄 in 𝐵𝐶𝑌 𝑋. Hence

∠𝑋𝑄𝑌 + ∠𝐶𝑄𝐵 = 180∘.

Equivalently,
∠𝑋𝑄𝑌 = 180∘ − ∠𝐶𝑄𝐵 = 180∘ − ∠𝐵𝐴𝐶,

as required.


