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Problem 1. Let k ≤ 2022 be a positive integer. Alice and Bob play a game on
a 2022 × 2022 board. Initially, all cells are white. Alice starts and the players
alternate. In her turn, Alice can either color one white cell in red or pass her turn.
In his turn, Bob can either color a k × k square of white cells in blue or pass his
turn. Once both players pass, the game ends and the person who colored more cells
wins (a draw can occur).

For each 1 ≤ k ≤ 2022, determine which player (if any) has a winning strategy.
(David Hruška)

Solution. Answer: For k ∈ {1, 3, 337, 1011} the game ends in a draw, otherwise
Alice wins.

Fix k. Number the rows from top to bottom and the columns from left to right
using numbers 1, . . . , 2022. We say that a cell is critical if its row-number and
column-number are both divisible by k. Note that Bob colors exactly one critical
cell in each his turn. Let c = ⌊2022/k⌋2 be the number of critical cells.
We distinguish 3 cases based on the value 2022/k.

(1) 2022/k ̸∈ Z. Then Alice can force a win, e.g. by primarily coloring the
critical cells (and then coloring the rest): If she follows this strategy then
Bob will color a k × k square in at most c/2 of his turns, so in total he will
color 1

2
c · k2 < 1

2
· 20222 cells.

(2) 2022/k is an odd integer. Then Alice can force a win by the same strategy:
In this case c is odd, so Bob will color a k × k square in at most ⌊c/2⌋ < 1

2
c

of his turns, so in total he will color strictly less than 1
2
c ·k2 = 1

2
· 20222 cells.

(3) 2022/k is an even integer. Then both players can guarantee at least a draw:
Alice by the above strategy, Bob by always coloring a k × k square whose
bottom right corner cell is critical. Since in this case c is even and each
Alice’s move prevents Bob from coloring at most 1 such square, using this
strategy he will color at least 1

2
c · k2 = 1

2
· 20222 cells.

Since 2022 = 2 · 3 · 337, case (3) occurs if and only if k ∈ {1, 3, 337, 1011}.
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Problem 2. Find all functions f : (0,∞) → (0,∞) such that

f

(
f(x) +

y + 1

f(y)

)
=

1

f(y)
+ x+ 1

for all x, y > 0. (Dominik Burek)

Solution. First, observe that the range of f contains the interval (A,∞) where
A = 1

f(1)
+1. Indeed, for any B > A we let x = B−A > 0 and y = 1 and we obtain

f

(
f(x) +

y + 1

f(y)

)
=

1

f(y)
+ x+ 1 = B.

Second, f is injective. Indeed, if f(x1) = f(x2) then

1

f(y)
+ x1 + 1 = f

(
f(x1) +

y + 1

f(y)

)
= f

(
f(x2) +

y + 1

f(y)

)
=

1

f(y)
+ x2 + 1

which yields x1 = x2.
Now, consider an arbitrary 0 < δ < 1

A
. Write δ = 1

B
− 1

C
for some C > B > A.

Then B = f(y1) and C = f(y2) for some y1, y2 > 0. Let x > 0 be arbitrary and set
x1 = x, x2 = x+ δ. We have

1

f(y1)
+ x1 + 1 =

1

f(y2)
+ x2 + 1,

hence

f

(
f(x1) +

y1 + 1

f(y1)

)
= f

(
f(x2) +

y2 + 1

f(y2)

)
and, by injectivity,

f(x1) +
y1 + 1

f(y1)
= f(x2) +

y2 + 1

f(y2)
.

This rewrites as f(x + δ) = f(x) + εδ where εδ =
y1 + 1

f(y1)
− y2 + 1

f(y2)
depends only

on δ. Easy induction yields f(x + nδ) = f(x) + nεδ for every integer n satisfying
x+ nδ > 0.

We prove now that f is linear on Q ∩ (0,∞). For every integer k > A we have

f(2) = f(1 + k · 1
k
) = f(1) + kε1/k, hence ε1/k =

f(2)− f(1)

k
. Let x be a positive

rational. Write x =
m

n
for some integers m,n such that n > A. Then

f(x) = f

(
1 +

m− n

n

)
= f(1) + (m− n)ε1/n = f(1) +

(m− n)(f(2)− f(1))

n

= f(1) + (x− 1)(f(2)− f(1)).

We prove now that f is increasing. Suppose otherwise: f(x) > f(y) for some

0 < x < y. Let δ =
y − x

k
where k is an integer so large that δ <

1

A
. Then

f(y) = f(x + kδ) = f(x) + kεδ, hence εδ =
f(y)− f(x)

k
< 0. Then f(x + nδ) =

f(x) − nεδ < 0 for sufficiently large n which contradicts the assumption that the
codomain of f is (0,∞).

Since f is linear on Q ∩ (0,∞) and increasing on (0,∞), f is linear on (0,∞).
Letting f(x) = ax+ b we obtain

a

(
ax+ b+

y + 1

ay + b

)
+ b =

1

ay + b
+ x+ 1,

which immediately gives a = 1 and b = 0. The function f(x) = x clearly works.
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Problem 3. Circles Ω1 and Ω2 with different radii intersect at two points, denote
one of them by P . A variable line ℓ passing through P intersects the arc of Ω1 which
is outside of Ω2 at X1, and the arc of Ω2 which is outside of Ω1 at X2. Let R be
the point on segment X1X2 such that X1P = RX2. The tangent to Ω1 through X1

meets the tangent to Ω2 through X2 at T . Prove that line RT is tangent to a fixed
circle, independent of the choice of ℓ. (Josef Tkadlec)

Solution. Denote the other intersection of Ω1 and Ω2 by Q. First we angle-chase
that points Q, X1, T , X2 are concyclic: Indeed,

180◦ − ∠X2TX1 = ∠TX1X2 + ∠X1X2T = ∠X1QP + ∠PQX2 = ∠X1QX2.

Moreover, if we denote by S the second intersection of PQ and the circumcircle of
QX1TX2 then ST∥X1X2: Indeed, ∠X1QS = ∠TX1X2. Hence RT is a reflection
of PQ about the perpendicular bisector of X1X2 and it suffices to prove that this
perpendicular bisector passes through a fixed point not on PQ, independent of the
choice of ℓ – all lines RT will then be tangent to a circle with center at this fixed
point that is tangent to PQ.

Ω1

Ω2

P
X1

X2

T

Q

Ω1

Ω2

X1

X2

O1 O2

S

P

Q

R

Z

Let O1, O2 be the centers of Ω1, Ω2 and r1, r2 their radii. We claim that the desired
fixed point is the fourth vertex Z of parallelogram O1PO2Z. Since ZO2 = O1P =
r1 = X1O1 and O2X2 = r2 = O2P = O1Z, it suffices to prove that ∠X2O2Z =
∠X1O1Z. And this is straightforward angle-chasing again: E.g. by looking at
a (possibly self-intersecting) pentagon ZO1X1X2O2 it suffices to show ∠X1OZ +
∠ZO2X2 = 360◦ and we indeed have

540◦ − ∠X1OZ + ∠ZO2X2 = ∠O1ZO2 + ∠O2X2X1 + ∠X2X1O1

= ∠O2PO1 + ∠X2PO2 + ∠O1PX1 = 180◦.

Another Solution. We sketch another way to finish the solution after proving that
line TR is the reflection of PQ about the perpendicular bisector of X1X2.

Claim. All the midpoints of the segments X1X2 lay on a circle.

Proof. Angle chasing or spiral similarity lemma gives that △X1QX2 ∼ △X ′
1QX ′

2.
Therefore the spiral similarity that takes △X1QX2 to △X ′

1QX ′
2, also takes M to

M ′. Finally, angle chasing gives

∠MPM ′ = ∠X1PX ′
1 = ∠X1QX ′

1 = ∠MQM ′. □

Next, consider the antipodal point to P on (MPQ). Call it P ′. Then by Thales
theorem ∠P ′MP = 90. Thus all perpendicular bisectors intersect at P ′.
Finally, construct the circle with center P ′ tangent to PQ and denote it by Ω.

Then all the lines ℓ are tangent to Ω:
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X1

P X ′
2

X2
X ′

1

M
M ′

QP ′

Indeed, since MP ′ is a diameter of Ω and RT is the reflection of PQ across MP ′,
RT has to also be a tangent.



5

Problem 4. Given a positive integer n, denote by τ(n) the number of positive
divisors of n, and by σ(n) the sum of all positive divisors of n. Find all positive
integers n satisfying

σ(n) = τ(n) ·
⌈√

n
⌉
.

(Here, ⌈x⌉ denotes the smallest integer not less than x.) (Michael Reitmeir)

Solution. Answer: n ∈ {1, 3, 5, 6}.
We consider two cases:

(1) n is a square: n = 1 is a solution, so assume n > 1. Squares have an odd
number of positive divisors, so we write τ(n) = 2k + 1 with k > 0 and
dk+1 =

√
n. Furthermore, ⌈

√
n⌉ =

√
n, so the given equation is equivalent

to

d1 + · · ·+ dk + dk+2 + · · ·+ d2k+1 = 2k ·
√
n

For i ∈ {1, . . . , k}, di and d2k+2−i are complementary divisors, i.e. di ·
d2k+2−i = n. Thus, we obtain an equivalent equation:(

d1 − 2
√
n+ d2k+1

)
+
(
d2 − 2

√
n+ d2k

)
+ · · ·+

(
dk − 2

√
n+ dk+2

)
= 0

⇐⇒
(√

d1 −
√

d2k+1

)2

+
(√

d2 −
√
d2k

)2

+ · · ·+
(√

dk −
√

dk+2

)2

= 0.

Since squares are non-negative and d1, ..., d2k+1 are pairwise distinct, the
equation has no solutions.

(2) n is not a square: Then no divisor of n is its own complementary divisor, so
n has an even number of positive divisors and we write τ(n) = 2k. We shall
prove the following inequality for n sufficiently large:

d1 + · · ·+ d2k > 2k ·
⌈√

n
⌉

First, note that
√
n+ 1 ≥ ⌈

√
n⌉, so it suffices to show

d1 + · · ·+ d2k > 2k ·
(√

n+ 1
)
.

For i ∈ {1, . . . , i}, di and d2k+1−i are complementary divisors, so di ·d2k+1−i =
n. Hence we obtain an equivalent inequality:(

d1 − 2
√
n+ d2k

)
+
(
d2 − 2

√
n+ d2k−1

)
+ · · ·+

(
dk − 2

√
n+ dk+1

)
> 2k

⇐⇒
(√

d1 −
√

d2k

)2

+
(√

d2 −
√

d2k−1

)2

+ · · ·+
(√

dk −
√

dk+1

)2

> 2k.

But for n sufficiently large, the term
(√

d1 −
√
d2k

)2
= (

√
n− 1)

2
is already

bigger than the right-hand side: Indeed, the numbers
⌊
n
2

⌋
+1,

⌊
n
2

⌋
+2, . . . , n−

1 do not divide n, so 2k = τ(n) ≤
⌊
n
2

⌋
+ 2 ≤ n

2
+ 2. As n

2
grows faster than

2
√
n for large n, we will get the desired estimate. Indeed, this happens for

n ≥ 20, since

n

2
=

√
n

2
·
√
n ≥

√
20

2
·
√
n = 2

√
n+ (

√
5− 2)

√
n ≥

≥ 2
√
n+ (

√
5− 2)

√
20 = 2

√
n+ 10− 2

√
5 > 2

√
n+ 1,

the last inequality resulting from
√
5 < 9/4.

Finally, it remains to manually check all non-squares n ∈ {2, 3, . . . , 19}.
Thus, we obtain solutions 3, 5, and 6, and the complete set of solutions is
{1, 3, 5, 6}.
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Another Solution. (for case n not a square, sketch). Let τ(n) = 2k and ⌈
√
n⌉ =

s <
√
n+1. We show that for n ≥ 8 we have σ(n) > 2k · s, thus it remains to check

n ∈ {2, 3, 5, 6, 7} of which only n ∈ {3, 5, 6} work.
Pairing the divisors d1, . . . , d2k up such that product in each pair is constant, we

get d2k+d1 > d2k−1+d2 > · · · > dk+1+dk, where each sum is an integer. Moreover,
even the smallest sum satisfies dk+1 + dk > 2

√
n > 2(s − 1), and since both sides

are integers we get dk+1 + dk ≥ 2s − 1. It remains to show that for n ≥ 8 we have
n + 1 = d2k + d1 > 2s + 1, i.e. n > 2s. This is simple algebra: it suffices to show
n > 2(

√
n+1), i.e. (

√
n− 1)2 > 3, which is true for n > (

√
3+1)2 = 4+2

√
3

.
= 7.5.

(As a slightly weaker bound, for n ≥ 9 (thus
√
n ≥ 3) we have n ≥ 2

√
n +

√
n >

2(
√
n+ 1) > 2s).
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Problem 5. Let ABC be a triangle with AB < AC and circumcenter O. The angle
bisector of ∠BAC meets the side BC at D. The line through D perpendicular to
BC meets the segment AO at X. Furthermore, let Y be the midpoint of segment
AD. Prove that points B, C, X, Y are concyclic. (Karl Czakler)

Solution. First, we angle-chase that the triangle ADX is X-isosceles: By isogonal
conjugation of circumcenter and orthocenter, the angle bisector AD also bisects the
angle between AO and the A-altitude. Since DX is parallel to this altitude, the
angles ∠XDA and ∠DAX are equal.

Next, let ℓ be the tangent to the circle (ABC) through A and let P be its inter-
section with BC. Since PAXD is a kite and XY is the perpendicular bisector of
its diagonal AD, the line XY passes through P too.

Finally, from the right triangle PAX and by the power of A with with respect to
the circle (ABC) we obtain PY · PX = PA2 = PB · PC, thus BCXY is cyclic.

A

B CD

O
Y

P

X

A

B CD

O
Y

X

S

EF

`

Another Solution. Denote by S the midpoint of arc BC not containing A. It is
well known that S lies on line AD, and that OS is the perpendicular bisector of
segment BC. Let E be the reflection of D across the point S, and let F be the
reflection of E across the perpendicular bisector of BC.

Since the quadrilateral ABSC is inscribed, we have DB · DC = DA · DS, and
furthermore, DS = 1

2
DE and DA = 2DY by definition. Thus, DB ·DC = DY ·DE

as well, hence B, Y , C and E are concyclic. Since BCEF is an isosceles trapezoid,
point F lies on this circle too.

As in the first solution we angle-chase that triangle DXA is X-isosceles. Thus,
∠DYX = ∠EYX = 90◦, and since ∠EFX = 90◦ as well, point X lies on the
circumcircle of triangle EY F , as do points B and C, finishing the proof.

Another Solution.

Claim: XY ⊥ AD.

Let S = AD ∩⊙ABC. Then XD ∥ OS, implying that ∆AXD ∼ ∆AOS. Hence
∆AOS is isoceles and we are done.

Consider the inversion around A with radius
√
AB · AC, followed by a reflection

over the angle bisector of ∠BAC. This transformation has the following known
properties:
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• B ↔ C.
• BC ↔ ⊙ABC.

So D is sent to S. Furthermore, since Y is the midpoint of AD, D′ has to be the
midpoint of Y ′. Thus Y ′ is the reflection of A across S.

It is well know that AO becomes the altitude through A after reflection over the
angle bisector of ∠BAC. Together with the fact that

90 = ∠AYX = ∠AX ′Y ′

one can conclue that X ′ is the projection from Y ′ to the altitude of A. Thus
X ′Y ′ ∥ BC. OS is the perpendicular bisector of BC. Due to Thales theorem
X ′S = Y ′S, meaning OS is also the perpendicular bisector of X ′Y ′. Finally, one
can see that X ′Y ′CB is an isoceles trapezoid and therefore has a circumcircle.

A

B

O

C

Y X

X ′

D

S

Y ′
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Problem 6. Consider 26 letters A, . . . , Z. A string is a finite sequence consisting
of those letters. We say that a string s is nice if it contains each of the 26 letters
at least once, and each permutation of letters A, . . . , Z occurs in s as a subsequence
the same number of times. Prove that:

(a) There exists a nice string.
(b) Any nice string contains at least 2022 letters.

(Here, a permutation π of the 26 letters is as a subsequence of a string s if there
exist 26 indices i1 < i2 < · · · < i26 such that π = si1si2 . . . si26 .) (Václav Rozhoň)

Solution. Let n(t, s) be the number of occurrences of t in s as a subsequence.

Part (a). We will construct a nice string by the following inductive process. First,
let s1 = AB . . . Z. Next, for each 1 ≤ i < 26 we define si+1 from si as follows. For a
string s and a function π : {A,B, . . . , Z} → {A,B, . . . , Z} permuting the alphabet,
we let the π-version of s be the string π(s) = π(s1)π(s2) . . . π(s|s|). Consider all 26!
permuting functions π1, π2, . . . , π26!; we set

si+1 = π1(si)π2(si) . . . π26!(si).

That is, si+1 is the concatenation of all versions of si in an arbitrary order.
Next, we prove that s26 is a nice string. For 1 ≤ i ≤ 26, consider the set Ti of

all strings of length i containing unique letters from {A, . . . , Z}. We prove that the
number of occurrences of each string t ∈ Ti in si is the same which, in particular,
implies that s26 is nice. We prove this by induction; it holds for i = 1, in fact
n(ℓ, s1) = 1 for all letters ℓ. For i > 1, consider any two strings t, t′ ∈ Ti and we
show that n(t, si) = n(t′, si). We consider separately the occurrences of t, t′ in si
that are fully contained in some πj(si−1), 1 ≤ j ≤ 26!, and those that are not.
The number of occurrences of t in si of the first type is equal to

∑
1≤j≤26! n(t, πj(si−1)).

This expression does not change its value if we change t to t′, since it is a sum over
all π-versions of si−1 and so it remains the same when we rename the letters.

The number of occurrences of t in si of the second type is a sum over all the ways
how to distribute the i letters of t in different versions of si−1 without distributing
all letters to some πj(si−1). For each such way, if we use tj for the subsequence of
t that we distribute to πj(si−1), we get the number of such occurrences of t in s by
computing the product

∏
1≤j≤26! n(tj, πj(si−1)) (we set n(∅, s) = 1). Since for all j

we have |tj| < |t|, by induction replacing t by t′ does not change the value of any
term in the product, and hence the number of all occurrences of the second type is
the same too.

Part (b). We will prove that for any nice string s we have maxℓ∈{A,...,Z} n(ℓ, s) >
2022.

To do so, we first prove that if we remove all occurrences of a letter, say, Z, from s,
the resulting string s′ is still nice (under the natural generalization of a string being
nice for general alphabets). This is because the number of occurrences of each new
25-letter permutation, e.g. AB . . . Y , can be computed as

n(AB . . . Y, s′) =
n(ZAB . . . Y, s) + n(AZB . . . Y, s) + . . . , n(AB . . . Y Z, s)

n(Z, s)

and all terms in the numerator on the right hand side have the same value for
all permutations of A,B, . . . , Y . Iterating this argument (i.e. by straightforward
induction) we see that restricting a nice string s to any (nonzero) number of letters
gives a nice string.

Next, consider any nice string s′ over an alphabet A consisting of |A| = p letters,
for p a prime. The number of occurrences of any permutation on p letters in s
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needs to be exactly
∏

ℓ∈A n(ℓ, s′)/p!, so in particular for at least one ℓ ∈ A we have
p|n(ℓ, s′).

Note that this property needs to hold for any subsequence of s that we get by
dropping all occurrences of all but some p different letters from it. In particular,
there can be at most p−1 letters of s such that p ∤ n(ℓ, s), for any prime 1 < p < 26.

Consider the primes 2, 3, 5, 7, 11. As 26− 1− 2− 4− 6− 10 = 3 ≥ 1, there exists
a letter ℓ ∈ {A, . . . , Z} such that each of these five primes divides n(ℓ, s). Hence,
n(ℓ, s) ≥ 2 · 3 · 5 · 7 · 11 = 2310 > 2022, as needed.

Remark. In the final step of part (b), one can get a better estimate by using AM-GM
inequality instead of asserting existence of one letter whose number of occurrences
(“frequency”) is divisible by lot of primes. That is, look at the frequencies {n(ℓ, s) |
ℓ ∈ {A, . . . , Z}} of the 26 letters in s. Then for any prime p < 26, at least 26− (p−
1) = 27− p of those frequencies are multiples of p. By AM-GM we thus get

|s| =
∑

ℓ∈{A,...,Z}

n(ℓ, s) ≥ 26 · 26
√
225324 · · · 234 > 500 000.


