CPS(A) Match 2022: Solutions and Marking schemes

ISTA, Austria
July 1 - July 4, 2022

Problem 1. Let $k \leq 2022$ be a positive integer. Alice and Bob play a game on a 2022×2022 board. Initially, all cells are white. Alice starts and the players alternate. In her turn, Alice can either color one white cell in red or pass her turn. In his turn, Bob can either color a $k \times k$ square of white cells in blue or pass his turn. Once both players pass, the game ends and the person who colored more cells wins (a draw can occur).

For each $1 \leq k \leq 2022$, determine which player (if any) has a winning strategy.
(David Hruška)

Solution. Answer: For $k \in\{1,3,337,1011\}$ the game ends in a draw, otherwise Alice wins.

Fix k. Number the rows from top to bottom and the columns from left to right using numbers $1, \ldots, 2022$. We say that a cell is critical if its row-number and column-number are both divisible by k. Note that Bob colors exactly one critical cell in each his turn. Let $c=\lfloor 2022 / k\rfloor^{2}$ be the number of critical cells.

We distinguish 3 cases based on the value 2022/k.
(1) $2022 / k \notin \mathbb{Z}$. Then Alice can force a win, e.g. by primarily coloring the critical cells (and then coloring the rest): If she follows this strategy then Bob will color a $k \times k$ square in at most $c / 2$ of his turns, so in total he will color $\frac{1}{2} c \cdot k^{2}<\frac{1}{2} \cdot 2022^{2}$ cells.
(2) $2022 / k$ is an odd integer. Then Alice can force a win by the same strategy: In this case c is odd, so Bob will color a $k \times k$ square in at most $\lfloor c / 2\rfloor<\frac{1}{2} c$ of his turns, so in total he will color strictly less than $\frac{1}{2} c \cdot k^{2}=\frac{1}{2} \cdot 2022^{2}$ cells.
(3) $2022 / k$ is an even integer. Then both players can guarantee at least a draw: Alice by the above strategy, Bob by always coloring a $k \times k$ square whose bottom right corner cell is critical. Since in this case c is even and each Alice's move prevents Bob from coloring at most 1 such square, using this strategy he will color at least $\frac{1}{2} c \cdot k^{2}=\frac{1}{2} \cdot 2022^{2}$ cells.
Since $2022=2 \cdot 3 \cdot 337$, case (3) occurs if and only if $k \in\{1,3,337,1011\}$.

Problem 2. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
f\left(f(x)+\frac{y+1}{f(y)}\right)=\frac{1}{f(y)}+x+1
$$

for all $x, y>0$.
(Dominik Burek)

Solution. First, observe that the range of f contains the interval (A, ∞) where $A=\frac{1}{f(1)}+1$. Indeed, for any $B>A$ we let $x=B-A>0$ and $y=1$ and we obtain

$$
f\left(f(x)+\frac{y+1}{f(y)}\right)=\frac{1}{f(y)}+x+1=B .
$$

Second, f is injective. Indeed, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then

$$
\frac{1}{f(y)}+x_{1}+1=f\left(f\left(x_{1}\right)+\frac{y+1}{f(y)}\right)=f\left(f\left(x_{2}\right)+\frac{y+1}{f(y)}\right)=\frac{1}{f(y)}+x_{2}+1
$$

which yields $x_{1}=x_{2}$.
Now, consider an arbitrary $0<\delta<\frac{1}{A}$. Write $\delta=\frac{1}{B}-\frac{1}{C}$ for some $C>B>A$. Then $B=f\left(y_{1}\right)$ and $C=f\left(y_{2}\right)$ for some $y_{1}, y_{2}>0$. Let $x>0$ be arbitrary and set $x_{1}=x, x_{2}=x+\delta$. We have

$$
\frac{1}{f\left(y_{1}\right)}+x_{1}+1=\frac{1}{f\left(y_{2}\right)}+x_{2}+1
$$

hence

$$
f\left(f\left(x_{1}\right)+\frac{y_{1}+1}{f\left(y_{1}\right)}\right)=f\left(f\left(x_{2}\right)+\frac{y_{2}+1}{f\left(y_{2}\right)}\right)
$$

and, by injectivity,

$$
f\left(x_{1}\right)+\frac{y_{1}+1}{f\left(y_{1}\right)}=f\left(x_{2}\right)+\frac{y_{2}+1}{f\left(y_{2}\right)}
$$

This rewrites as $f(x+\delta)=f(x)+\varepsilon_{\delta}$ where $\varepsilon_{\delta}=\frac{y_{1}+1}{f\left(y_{1}\right)}-\frac{y_{2}+1}{f\left(y_{2}\right)}$ depends only on δ. Easy induction yields $f(x+n \delta)=f(x)+n \varepsilon_{\delta}$ for every integer n satisfying $x+n \delta>0$.

We prove now that f is linear on $\mathbb{Q} \cap(0, \infty)$. For every integer $k>A$ we have $f(2)=f\left(1+k \cdot \frac{1}{k}\right)=f(1)+k \varepsilon_{1 / k}$, hence $\varepsilon_{1 / k}=\frac{f(2)-f(1)}{k}$. Let x be a positive rational. Write $x=\frac{m}{n}$ for some integers m, n such that $n>A$. Then

$$
\begin{aligned}
f(x) & =f\left(1+\frac{m-n}{n}\right)=f(1)+(m-n) \varepsilon_{1 / n}=f(1)+\frac{(m-n)(f(2)-f(1))}{n} \\
& =f(1)+(x-1)(f(2)-f(1))
\end{aligned}
$$

We prove now that f is increasing. Suppose otherwise: $f(x)>f(y)$ for some $0<x<y$. Let $\delta=\frac{y-x}{k}$ where k is an integer so large that $\delta<\frac{1}{A}$. Then $f(y)=f(x+k \delta)=f(x)+k \varepsilon_{\delta}$, hence $\varepsilon_{\delta}=\frac{f(y)-f(x)}{k}<0$. Then $f(x+n \delta)=$ $f(x)-n \varepsilon_{\delta}<0$ for sufficiently large n which contradicts the assumption that the codomain of f is $(0, \infty)$.

Since f is linear on $\mathbb{Q} \cap(0, \infty)$ and increasing on $(0, \infty), f$ is linear on $(0, \infty)$. Letting $f(x)=a x+b$ we obtain

$$
a\left(a x+b+\frac{y+1}{a y+b}\right)+b=\frac{1}{a y+b}+x+1,
$$

which immediately gives $a=1$ and $b=0$. The function $f(x)=x$ clearly works.

Problem 3. Circles Ω_{1} and Ω_{2} with different radii intersect at two points, denote one of them by P. A variable line ℓ passing through P intersects the arc of Ω_{1} which is outside of Ω_{2} at X_{1}, and the arc of Ω_{2} which is outside of Ω_{1} at X_{2}. Let R be the point on segment $X_{1} X_{2}$ such that $X_{1} P=R X_{2}$. The tangent to Ω_{1} through X_{1} meets the tangent to Ω_{2} through X_{2} at T. Prove that line $R T$ is tangent to a fixed circle, independent of the choice of ℓ.
(Josef Tkadlec)

Solution. Denote the other intersection of Ω_{1} and Ω_{2} by Q. First we angle-chase that points Q, X_{1}, T, X_{2} are concyclic: Indeed,

$$
180^{\circ}-\angle X_{2} T X_{1}=\angle T X_{1} X_{2}+\angle X_{1} X_{2} T=\angle X_{1} Q P+\angle P Q X_{2}=\angle X_{1} Q X_{2}
$$

Moreover, if we denote by S the second intersection of $P Q$ and the circumcircle of $Q X_{1} T X_{2}$ then $S T \| X_{1} X_{2}$: Indeed, $\angle X_{1} Q S=\angle T X_{1} X_{2}$. Hence $R T$ is a reflection of $P Q$ about the perpendicular bisector of $X_{1} X_{2}$ and it suffices to prove that this perpendicular bisector passes through a fixed point not on $P Q$, independent of the choice of ℓ - all lines $R T$ will then be tangent to a circle with center at this fixed point that is tangent to $P Q$.

Let O_{1}, O_{2} be the centers of Ω_{1}, Ω_{2} and r_{1}, r_{2} their radii. We claim that the desired fixed point is the fourth vertex Z of parallelogram $O_{1} P O_{2} Z$. Since $Z O_{2}=O_{1} P=$ $r_{1}=X_{1} O_{1}$ and $O_{2} X_{2}=r_{2}=O_{2} P=O_{1} Z$, it suffices to prove that $\angle X_{2} O_{2} Z=$ $\angle X_{1} O_{1} Z$. And this is straightforward angle-chasing again: E.g. by looking at a (possibly self-intersecting) pentagon $Z O_{1} X_{1} X_{2} O_{2}$ it suffices to show $\angle X_{1} O Z+$ $\angle Z O_{2} X_{2}=360^{\circ}$ and we indeed have

$$
\begin{aligned}
540^{\circ}-\angle X_{1} O Z+\angle Z O_{2} X_{2} & =\angle O_{1} Z O_{2}+\angle O_{2} X_{2} X_{1}+\angle X_{2} X_{1} O_{1} \\
& =\angle O_{2} P O_{1}+\angle X_{2} P O_{2}+\angle O_{1} P X_{1}=180^{\circ} .
\end{aligned}
$$

Another Solution. We sketch another way to finish the solution after proving that line $T R$ is the reflection of $P Q$ about the perpendicular bisector of $X_{1} X_{2}$.
Claim. All the midpoints of the segments $X_{1} X_{2}$ lay on a circle.
Proof. Angle chasing or spiral similarity lemma gives that $\triangle X_{1} Q X_{2} \sim \triangle X_{1}^{\prime} Q X_{2}^{\prime}$. Therefore the spiral similarity that takes $\triangle X_{1} Q X_{2}$ to $\triangle X_{1}^{\prime} Q X_{2}^{\prime}$, also takes M to M^{\prime}. Finally, angle chasing gives

$$
\angle M P M^{\prime}=\angle X_{1} P X_{1}^{\prime}=\angle X_{1} Q X_{1}^{\prime}=\angle M Q M^{\prime}
$$

Next, consider the antipodal point to P on $(M P Q)$. Call it P^{\prime}. Then by Thales theorem $\angle P^{\prime} M P=90$. Thus all perpendicular bisectors intersect at P^{\prime}.

Finally, construct the circle with center P^{\prime} tangent to $P Q$ and denote it by Ω. Then all the lines ℓ are tangent to Ω :

Indeed, since $M P^{\prime}$ is a diameter of Ω and $R T$ is the reflection of $P Q$ across $M P^{\prime}$, $R T$ has to also be a tangent.

Problem 4. Given a positive integer n, denote by $\tau(n)$ the number of positive divisors of n, and by $\sigma(n)$ the sum of all positive divisors of n. Find all positive integers n satisfying

$$
\sigma(n)=\tau(n) \cdot\lceil\sqrt{n}\rceil
$$

(Here, $\lceil x\rceil$ denotes the smallest integer not less than x.)
(Michael Reitmeir)

Solution. Answer: $n \in\{1,3,5,6\}$.
We consider two cases:
(1) n is a square: $n=1$ is a solution, so assume $n>1$. Squares have an odd number of positive divisors, so we write $\tau(n)=2 k+1$ with $k>0$ and $d_{k+1}=\sqrt{n}$. Furthermore, $\lceil\sqrt{n}\rceil=\sqrt{n}$, so the given equation is equivalent to

$$
d_{1}+\cdots+d_{k}+d_{k+2}+\cdots+d_{2 k+1}=2 k \cdot \sqrt{n}
$$

For $i \in\{1, \ldots, k\}, d_{i}$ and $d_{2 k+2-i}$ are complementary divisors, i.e. d_{i}. $d_{2 k+2-i}=n$. Thus, we obtain an equivalent equation:

$$
\begin{aligned}
&\left(d_{1}-2 \sqrt{n}+d_{2 k+1}\right)+\left(d_{2}-2 \sqrt{n}+d_{2 k}\right)+\cdots+\left(d_{k}-2 \sqrt{n}+d_{k+2}\right)=0 \\
& \Longleftrightarrow \quad\left(\sqrt{d_{1}}-\sqrt{d_{2 k+1}}\right)^{2}+\left(\sqrt{d_{2}}-\sqrt{d_{2 k}}\right)^{2}+\cdots+\left(\sqrt{d_{k}}-\sqrt{d_{k+2}}\right)^{2}=0
\end{aligned}
$$

Since squares are non-negative and $d_{1}, \ldots, d_{2 k+1}$ are pairwise distinct, the equation has no solutions.
(2) n is not a square: Then no divisor of n is its own complementary divisor, so n has an even number of positive divisors and we write $\tau(n)=2 k$. We shall prove the following inequality for n sufficiently large:

$$
d_{1}+\cdots+d_{2 k}>2 k \cdot\lceil\sqrt{n}\rceil
$$

First, note that $\sqrt{n}+1 \geq\lceil\sqrt{n}\rceil$, so it suffices to show

$$
d_{1}+\cdots+d_{2 k}>2 k \cdot(\sqrt{n}+1) .
$$

For $i \in\{1, \ldots, i\}, d_{i}$ and $d_{2 k+1-i}$ are complementary divisors, so $d_{i} \cdot d_{2 k+1-i}=$ n. Hence we obtain an equivalent inequality:

$$
\begin{aligned}
&\left(d_{1}-2 \sqrt{n}+d_{2 k}\right)+\left(d_{2}-2 \sqrt{n}+d_{2 k-1}\right)+\cdots+\left(d_{k}-2 \sqrt{n}+d_{k+1}\right)>2 k \\
& \Longleftrightarrow \quad\left(\sqrt{d_{1}}-\sqrt{d_{2 k}}\right)^{2}+\left(\sqrt{d_{2}}-\sqrt{d_{2 k-1}}\right)^{2}+\cdots+\left(\sqrt{d_{k}}-\sqrt{d_{k+1}}\right)^{2}>2 k
\end{aligned}
$$

But for n sufficiently large, the term $\left(\sqrt{d_{1}}-\sqrt{d_{2 k}}\right)^{2}=(\sqrt{n}-1)^{2}$ is already bigger than the right-hand side: Indeed, the numbers $\left\lfloor\frac{n}{2}\right\rfloor+1,\left\lfloor\frac{n}{2}\right\rfloor+2, \ldots, n-$ 1 do not divide n, so $2 k=\tau(n) \leq\left\lfloor\frac{n}{2}\right\rfloor+2 \leq \frac{n}{2}+2$. As $\frac{n}{2}$ grows faster than $2 \sqrt{n}$ for large n, we will get the desired estimate. Indeed, this happens for $n \geq 20$, since

$$
\begin{aligned}
\frac{n}{2} & =\frac{\sqrt{n}}{2} \cdot \sqrt{n} \geq \frac{\sqrt{20}}{2} \cdot \sqrt{n}=2 \sqrt{n}+(\sqrt{5}-2) \sqrt{n} \geq \\
& \geq 2 \sqrt{n}+(\sqrt{5}-2) \sqrt{20}=2 \sqrt{n}+10-2 \sqrt{5}>2 \sqrt{n}+1
\end{aligned}
$$

the last inequality resulting from $\sqrt{5}<9 / 4$.
Finally, it remains to manually check all non-squares $n \in\{2,3, \ldots, 19\}$. Thus, we obtain solutions 3,5 , and 6 , and the complete set of solutions is $\{1,3,5,6\}$.

Another Solution. (for case n not a square, sketch). Let $\tau(n)=2 k$ and $\lceil\sqrt{n}=$ $s<\sqrt{n}+1$. We show that for $n \geq 8$ we have $\sigma(n)>2 k \cdot s$, thus it remains to check $n \in\{2,3,5,6,7\}$ of which only $n \in\{3,5,6\}$ work.

Pairing the divisors $d_{1}, \ldots, d_{2 k}$ up such that product in each pair is constant, we get $d_{2 k}+d_{1}>d_{2 k-1}+d_{2}>\cdots>d_{k+1}+d_{k}$, where each sum is an integer. Moreover, even the smallest sum satisfies $d_{k+1}+d_{k}>2 \sqrt{n}>2(s-1)$, and since both sides are integers we get $d_{k+1}+d_{k} \geq 2 s-1$. It remains to show that for $n \geq 8$ we have $n+1=d_{2 k}+d_{1}>2 s+1$, i.e. $n>2 s$. This is simple algebra: it suffices to show $n>2(\sqrt{n}+1)$, i.e. $(\sqrt{n}-1)^{2}>3$, which is true for $n>(\sqrt{3}+1)^{2}=4+2 \sqrt{3} \doteq 7.5$. (As a slightly weaker bound, for $n \geq 9$ (thus $\sqrt{n} \geq 3$) we have $n \geq 2 \sqrt{n}+\sqrt{n}>$ $2(\sqrt{n}+1)>2 s)$.

Problem 5. Let $A B C$ be a triangle with $A B<A C$ and circumcenter O. The angle bisector of $\angle B A C$ meets the side $B C$ at D. The line through D perpendicular to $B C$ meets the segment $A O$ at X. Furthermore, let Y be the midpoint of segment $A D$. Prove that points B, C, X, Y are concyclic.
(Karl Czakler)

Solution. First, we angle-chase that the triangle $A D X$ is X-isosceles: By isogonal conjugation of circumcenter and orthocenter, the angle bisector $A D$ also bisects the angle between $A O$ and the A-altitude. Since $D X$ is parallel to this altitude, the angles $\angle X D A$ and $\angle D A X$ are equal.

Next, let ℓ be the tangent to the circle $(A B C)$ through A and let P be its intersection with $B C$. Since $P A X D$ is a kite and $X Y$ is the perpendicular bisector of its diagonal $A D$, the line $X Y$ passes through P too.

Finally, from the right triangle $P A X$ and by the power of A with with respect to the circle $(A B C)$ we obtain $P Y \cdot P X=P A^{2}=P B \cdot P C$, thus $B C X Y$ is cyclic.

Another Solution. Denote by S the midpoint of $\operatorname{arc} B C$ not containing A. It is well known that S lies on line $A D$, and that $O S$ is the perpendicular bisector of segment $B C$. Let E be the reflection of D across the point S, and let F be the reflection of E across the perpendicular bisector of $B C$.

Since the quadrilateral $A B S C$ is inscribed, we have $D B \cdot D C=D A \cdot D S$, and furthermore, $D S=\frac{1}{2} D E$ and $D A=2 D Y$ by definition. Thus, $D B \cdot D C=D Y \cdot D E$ as well, hence B, Y, C and E are concyclic. Since $B C E F$ is an isosceles trapezoid, point F lies on this circle too.

As in the first solution we angle-chase that triangle $D X A$ is X-isosceles. Thus, $\angle D Y X=\angle E Y X=90^{\circ}$, and since $\angle E F X=90^{\circ}$ as well, point X lies on the circumcircle of triangle $E Y F$, as do points B and C, finishing the proof.

Another Solution.

Claim: $X Y \perp A D$.
Let $S=A D \cap \odot A B C$. Then $X D \| O S$, implying that $\triangle A X D \sim \triangle A O S$. Hence $\triangle A O S$ is isoceles and we are done.
Consider the inversion around A with radius $\sqrt{A B \cdot A C}$, followed by a reflection over the angle bisector of $\angle B A C$. This transformation has the following known properties:

- $B \leftrightarrow C$.
- $B C \leftrightarrow \odot A B C$.

So D is sent to S. Furthermore, since Y is the midpoint of $A D, D^{\prime}$ has to be the midpoint of Y^{\prime}. Thus Y^{\prime} is the reflection of A across S.

It is well know that $A O$ becomes the altitude through A after reflection over the angle bisector of $\angle B A C$. Together with the fact that

$$
90=\angle A Y X=\angle A X^{\prime} Y^{\prime}
$$

one can conclue that X^{\prime} is the projection from Y^{\prime} to the altitude of A. Thus $X^{\prime} Y^{\prime} \| B C . O S$ is the perpendicular bisector of $B C$. Due to Thales theorem $X^{\prime} S=Y^{\prime} S$, meaning $O S$ is also the perpendicular bisector of $X^{\prime} Y^{\prime}$. Finally, one can see that $X^{\prime} Y^{\prime} C B$ is an isoceles trapezoid and therefore has a circumcircle.

Problem 6. Consider 26 letters A, \ldots, Z. A string is a finite sequence consisting of those letters. We say that a string s is nice if it contains each of the 26 letters at least once, and each permutation of letters A, \ldots, Z occurs in s as a subsequence the same number of times. Prove that:
(a) There exists a nice string.
(b) Any nice string contains at least 2022 letters.
(Here, a permutation π of the 26 letters is as a subsequence of a string s if there exist 26 indices $i_{1}<i_{2}<\cdots<i_{26}$ such that $\pi=s_{i_{1}} s_{i_{2}} \ldots s_{i_{26}}$.) (Václav Rozhoň)

Solution. Let $n(t, s)$ be the number of occurrences of t in s as a subsequence.
Part (a). We will construct a nice string by the following inductive process. First, let $s_{1}=A B \ldots Z$. Next, for each $1 \leq i<26$ we define s_{i+1} from s_{i} as follows. For a string s and a function $\pi:\{A, B, \ldots, Z\} \rightarrow\{A, B, \ldots, Z\}$ permuting the alphabet, we let the π-version of s be the string $\pi(s)=\pi\left(s_{1}\right) \pi\left(s_{2}\right) \ldots \pi\left(s_{|s|}\right)$. Consider all 26! permuting functions $\pi_{1}, \pi_{2}, \ldots, \pi_{26!}$; we set

$$
s_{i+1}=\pi_{1}\left(s_{i}\right) \pi_{2}\left(s_{i}\right) \ldots \pi_{26!}\left(s_{i}\right)
$$

That is, s_{i+1} is the concatenation of all versions of s_{i} in an arbitrary order.
Next, we prove that s_{26} is a nice string. For $1 \leq i \leq 26$, consider the set T_{i} of all strings of length i containing unique letters from $\{A, \ldots, Z\}$. We prove that the number of occurrences of each string $t \in T_{i}$ in s_{i} is the same which, in particular, implies that s_{26} is nice. We prove this by induction; it holds for $i=1$, in fact $n\left(\ell, s_{1}\right)=1$ for all letters ℓ. For $i>1$, consider any two strings $t, t^{\prime} \in T_{i}$ and we show that $n\left(t, s_{i}\right)=n\left(t^{\prime}, s_{i}\right)$. We consider separately the occurrences of t, t^{\prime} in s_{i} that are fully contained in some $\pi_{j}\left(s_{i-1}\right), 1 \leq j \leq 26$!, and those that are not.

The number of occurrences of t in s_{i} of the first type is equal to $\sum_{1 \leq j \leq 26!} n\left(t, \pi_{j}\left(s_{i-1}\right)\right)$. This expression does not change its value if we change t to t^{\prime}, since it is a sum over all π-versions of s_{i-1} and so it remains the same when we rename the letters.

The number of occurrences of t in s_{i} of the second type is a sum over all the ways how to distribute the i letters of t in different versions of s_{i-1} without distributing all letters to some $\pi_{j}\left(s_{i-1}\right)$. For each such way, if we use t_{j} for the subsequence of t that we distribute to $\pi_{j}\left(s_{i-1}\right)$, we get the number of such occurrences of t in s by computing the product $\prod_{1 \leq j \leq 26!} n\left(t_{j}, \pi_{j}\left(s_{i-1}\right)\right)$ (we set $n(\emptyset, s)=1$). Since for all j we have $\left|t_{j}\right|<|t|$, by induction replacing t by t^{\prime} does not change the value of any term in the product, and hence the number of all occurrences of the second type is the same too.
Part (b). We will prove that for any nice string s we have $\max _{\ell \in\{A, \ldots, Z\}} n(\ell, s)>$ 2022.

To do so, we first prove that if we remove all occurrences of a letter, say, Z, from s, the resulting string s^{\prime} is still nice (under the natural generalization of a string being nice for general alphabets). This is because the number of occurrences of each new 25 -letter permutation, e.g. $A B \ldots Y$, can be computed as

$$
n\left(A B \ldots Y, s^{\prime}\right)=\frac{n(Z A B \ldots Y, s)+n(A Z B \ldots Y, s)+\ldots, n(A B \ldots Y Z, s)}{n(Z, s)}
$$

and all terms in the numerator on the right hand side have the same value for all permutations of A, B, \ldots, Y. Iterating this argument (i.e. by straightforward induction) we see that restricting a nice string s to any (nonzero) number of letters gives a nice string.
Next, consider any nice string s^{\prime} over an alphabet \mathcal{A} consisting of $|\mathcal{A}|=p$ letters, for p a prime. The number of occurrences of any permutation on p letters in s
needs to be exactly $\prod_{\ell \in \mathcal{A}} n\left(\ell, s^{\prime}\right) / p$!, so in particular for at least one $\ell \in \mathcal{A}$ we have $p \mid n\left(\ell, s^{\prime}\right)$.

Note that this property needs to hold for any subsequence of s that we get by dropping all occurrences of all but some p different letters from it. In particular, there can be at most $p-1$ letters of s such that $p \nmid n(\ell, s)$, for any prime $1<p<26$.

Consider the primes $2,3,5,7,11$. As $26-1-2-4-6-10=3 \geq 1$, there exists a letter $\ell \in\{A, \ldots, Z\}$ such that each of these five primes divides $n(\ell, s)$. Hence, $n(\ell, s) \geq 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11=2310>2022$, as needed.
Remark. In the final step of part (b), one can get a better estimate by using AM-GM inequality instead of asserting existence of one letter whose number of occurrences ("frequency") is divisible by lot of primes. That is, look at the frequencies $\{n(\ell, s) \mid$ $\ell \in\{A, \ldots, Z\}\}$ of the 26 letters in s. Then for any prime $p<26$, at least $26-(p-$ $1)=27-p$ of those frequencies are multiples of p. By AM-GM we thus get

$$
|s|=\sum_{\ell \in\{A, \ldots, Z\}} n(\ell, s) \geq 26 \cdot \sqrt[26]{2^{25} 3^{24} \cdots 23^{4}}>500000
$$

