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(First day – 24 June 2019)

1. Let ω be a circle. Points A, B, C, X, D, Y lie on ω in this order such that
BD is its diameter and DX = DY = DP , where P is the intersection of AC and
BD. Denote by E, F the intersections of line XP with lines AB, BC, respectively.
Prove that points B, E, F, Y lie on a single circle. (Patrik Bak, Slovakia)

Solution. First, we show that the quadrilateral Y PCF is cyclic. Indeed, by
simple angle-chasing we have

∠Y PF = 2 · ∠Y PD = 180◇ − ∠BDY = 180◇ − ∠BCY = ∠Y CF.

The rest is angle-chasing again. We have ∠EFY = ∠PFY = ∠PCY = ∠ACY =
∠ABY = ∠EBY as desired.
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2. We consider positive integers n having at least six positive divisors. Let the
positive divisors of n be arranged in a sequence (di)1⊘i⊘k with

1 = d1 < d2 < · · · < dk = n (k ≥ 6).

Find all positive integers n such that

n = d2

5 + d2

6.

(Walther Janous, Austria)

Solution. In what follows we shall show that this question has the unique answer
n = 500. Indeed, from n = d2

5 + d2
6 we readily infer that n has to be even. (For,

otherwise d5 and d6 had to be odd. This in turn would yield n even.) Therefore
d2 = 2 is fixed. Furthermore from d5 | n we get d5 | d2

6 and similarly d6 | d2
5. This

means:
Every prime dividing d5 also divides d6 and vice versa.



If d5 has only one prime factor, i.e. it is a power of a prime, then d5 = pk and
d6 = pk+1. But since pk < 2pk ≤ pk+1, it follows that p = 2 and n = d2

5 + d2
6 =

22k + 22k+2 = 5 · 22k. Therefore either n = 20, which is not a solution, or

d2 = 2, d3 = 4, d4 = 5, d5 = 8, d6 = 10,

a contradiction.
Now d5 and d6 have at least two prime factors p and q with p < q and p2q2 |

d2
5 + d2

6 = n. Then d5 ≥ pq and since 1 < p < q, p2 < pq we also have d5 ≤ pq. Now

d2 = p = 2, {d3, d4} = {q, p2} = {q, 4}, d5 = pq = 2q, d6 = p2q = 4q.

We get n = d2
5 + d2

6 = 20q2, hence q ≤ 5. Checking the cases q = 3 and q = 5 gives
the unique solution n = 500.

3. A dissection of a convex polygon into finitely many triangles by segments is called
a trilateration if no three vertices of the created triangles lie on a single line (vertices
of some triangles might lie inside the polygon). We say that a trilateration is good

if its segments can be replaced with one-way arrows in such a way that the arrows
along every triangle of the trilateration form a cycle and the arrows along the whole
convex polygon also form a cycle. Find all n ≥ 3 such that the regular n-gon has a
good trilateration. (Josef Greilhuber, Austria)

Solution. We show that the regular n-gon has a good trilateration if and only if
3 | n.

Given a regular n-gon and its good trilateration, color the triangles whose arrows
go clockwise in black and the other ones in white. In this way, any two triangles
sharing an edge have received different colors and all the triangles sharing an edge
with the perimeter of the whole n-gon have received the same color (wlog black).
We say that a segment in the trilateration is interior if it is not one of the sides of
the n-gon. Let x be the number of interior segments. Since each interior segment is
a side of precisely one white triangle and the sides of white triangle are all different
interior segments, we have 3 | x. Arguing likewise for the black triangles, we obtain
3 | x + n. Hence 3 | n.

It remains to show that when 3 | n then the regular n-gon has a good trilatera-
tion. This is straightforward by mathematical induction.

. . . . . .

n = 3 n = 6 n → n+ 3
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4. Let α be a given real number. Determine all pairs (f, g) of functions f, g : R ⊃ R

satisfying
xf(x + y) + α ≤ yf(x ⊗ y) = g(x) + g(y)

for all x, y ∈ R. (Walther Janous, Austria)

Solution. Depending on α, the solutions are given by:

∙ If α = 1, then f(x) = C and g(x) = Cx for x ∈ R and C an arbitrary real
constant.

∙ If α = ⊗1, then f(x) = Cx and g(x) = Cx2 for x ∈ R and C an arbitrary real
constant.

∙ Else, f(x) = g(x) = 0 for x ∈ R.

Letting x = y = 0, we obtain 2g(0) = 0, thus g(0) = 0. Letting y = 0, we obtain
xf(x) = g(x) for all x ∈ R. Thus, the equation can be rewritten as

xf(x + y) + αyf(x ⊗ y) = xf(x) + yf(y). (1)

Letting x = 0 in (1), we obtain αyf(⊗y) = yf(y). This yields

∀x ̸= 0: f(⊗x) = αf(x). (2)

If f(x) = 0 for all x ̸= 0, we let y = ⊗x ̸= 0 in (1) and obtain xf(0) = 0, therefore
f is the zero function, which always solves the equation.

Assume now that there exists r ̸= 0 with f(r) ̸= 0. Then it follows from (2) that
f(r) = αf(⊗r) = α2f(r), thus α2 = 1 and hence α ∈ ¶∘1♢.

The right-hand side of (1) is symmetric in x and y. By switching x and y, we
thus obtain the equation

xf(x + y) + αyf(x ⊗ y) = yf(x + y) + αxf(y ⊗ x).

For r ∈ R we let x = (r + 1)/2 and y = (r ⊗ 1)/2, which yields

f(r) = α
r + 1

2
f(⊗1) ⊗ α

r ⊗ 1

2
f(1).

By (2), we obtain

f(r) =
αf(1)

2

⎞

α(r + 1) ⊗ (r ⊗ 1)
⎡

.

In the case α = 1 this means f(r) = f(1) for all r ∈ R. In the case α = ⊗1 this
means f(r) = rf(1) for all r ∈ R. Both functions solve the equation, as can be
checked easily.



5. Determine whether there exist 100 disks D2, D3, . . . , D101 in the plane such that
the following conditions hold for all pairs (a, b) of indices satisfying 2 ⊘ a < b ⊘ 101:

1. If a ♣ b then Da is contained in Db.

2. If GCD(a, b) = 1 then Da and Db are disjoint.

(A disk D(O, r) is a set of points in the plane whose distance to a given point O is at
most a given positive real number r.) (Josef Greilhuber & Josef Tkadlec, Austria)

Solution. Such disks do not exist. Suppose otherwise and denote by Oi the center
of the disk Di. Consider the set S = ¶O2, O3, O5, O7, O11♢ of centers of five disks
with pairwise coprime indices. We distinguish two cases:

(i) Some three points from S lie on a single line: Suppose the three collinear
points are Oi, Oj, Ok in this order. Then i ≤ k ⊘ 7 ≤ 11 ⊘ 101, hence the disk
Di≤k is defined. By 1., it contains both Di and Dk, thus it contains Oi and
Ok and by convexity it also contains Oj. Therefore, disks Dj, Di≤k intersect, a
contradiction with 2.
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(ii) No three points from S lie on a single line: Then there exist four points from S
that form a convex quadrilateral. (Indeed, either the convex hull of S contains
at least four points, or it is a triangle. In the latter case, the line passing
through the two interior points intersects two sides of the triangle and the two
interior points form a convex quadrilateral with the endpoints of the side that
is not intersected.) Suppose the four vertices of the convex quadrilateral are
Oi, Oj, Ok, Ol in this order. Then, as before, both i ≤ k and j ≤ l are at most
7 ≤ 11 ⊘ 101 hence the disks Di≤k and Dj≤l are defined. By 1. and by convexity,
they both contain the intersection P of diagonals of OiOjOkOl, which is a
contradiction with 2.

6. Let ABC be an acute triangle with AB < AC and ∠BAC = 60◇. Denote its
altitudes by AD, BE, CF and its orthocenter by H. Let K, L, M be the midpoints
of sides BC, CA, AB, respectively. Prove that the midpoints of segments AH, DK,
EL, FM lie on a single circle. (Dominik Burek, Poland)

Solution. Denote the midpoints of AH, DK, EL, FM by T , X, Y , Z, respectively.
Furthermore, let O be the circumcenter of triangle ABC and U the midpoint of AO
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(that is, the circumcenter of triangle AML). We will show that U lies on the circle
too.

First, we show that TUY Z is cyclic. In fact, we show that is is an isosceles
trapezoid whose line of symmetry is the angle bisector of ∠BAC: Since ∠BAC =
60◇, we have AE = 1

2
AB = AM , thus △AME is equilateral and, likewise, △AFL is

equilateral. Since Y and Z are the midpoints of lateral sides EL, MF of a trapezoid
ELFM , triangle AY Z is also equilateral and the perpendicular bisector of Y Z is
the angle bisector of ∠BAC. Regarding TU , since lines AT and AU are isogonal in
∠BAC and AF = AL, the right triangles AFH and ALO are congruent. Thus the
perpendicular bisector of TU is the angle bisector of ∠BAC as well.

Second, we show that UY XZ is cyclic: Let V be the center of parallelogram
AMKL. Since V is the midpoint of ML, it lies on the midline Y Z of trapezoid
MELF . Since it is the midpoint of AK, it also lies on the midline UX of trapezoid
AOKD. Thus, it remains to check that V Y ≤ V Z = V U ≤ V X, which is straightfor-
ward. For the left-hand side, we have V Y = 1

2
ME = 1

4
AB and V Z = 1

2
LF = 1

2
AF .

For the right-hand side, we have V U = 1

2
OK = 1

4
AH and V X = 1

2
AD. Plugging

this in, we need AB ≤ AF = AH ≤ AD which follows from BFHD being cyclic.
Since both TUY Z and UY XZ are cyclic, so is TY XZ.


