Czech-Polish-Slovak Match

IST Austria, 23-26 June 2019

(First day -24 June 2019)

1. Let ω be a circle. Points A, B, C, X, D, Y lie on ω in this order such that BD is its diameter and DX = DY = DP, where P is the intersection of AC and BD. Denote by E, F the intersections of line XP with lines AB, BC, respectively. Prove that points B, E, F, Y lie on a single circle.

2. We consider positive integers *n* having at least six positive divisors. Let the positive divisors of *n* be arranged in a sequence $(d_i)_{1 \le i \le k}$ with

$$1 = d_1 < d_2 < \dots < d_k = n \quad (k \ge 6).$$

Find all positive integers n such that

$$n = d_5^2 + d_6^2.$$

3. A dissection of a convex polygon into finitely many triangles by segments is called a *trilateration* if no three vertices of the created triangles lie on a single line (vertices of some triangles might lie inside the polygon). We say that a trilateration is *good* if its segments can be replaced with one-way arrows in such a way that the arrows along every triangle of the trilateration form a cycle and the arrows along the whole convex polygon also form a cycle. Find all $n \ge 3$ such that the regular *n*-gon has a good trilateration.

Time: 4 hours and 30 minutes. Each problem is worth 7 points.

Language: English

Czech-Polish-Slovak Match

IST Austria, 23–26 June 2019

(Second day - 25 June 2019)

4. Let α be a given real number. Determine all pairs (f,g) of functions $f,g:\mathbb{R}\to\mathbb{R}$ satisfying

$$xf(x+y) + \alpha \cdot yf(x-y) = g(x) + g(y)$$

for all $x, y \in \mathbb{R}$.

5. Determine whether there exist 100 disks $D_2, D_3, \ldots, D_{101}$ in the plane such that the following conditions hold for all pairs (a, b) of indices satisfying $2 \le a < b \le 101$:

1. If $a \mid b$ then D_a is contained in D_b .

2. If GCD(a, b) = 1 then D_a and D_b are disjoint.

(A disk D(O, r) is a set of points in the plane whose distance to a given point O is at most a given positive real number r.)

6. Let ABC be an acute triangle with AB < AC and $\angle BAC = 60^{\circ}$. Denote its altitudes by AD, BE, CF and its orthocenter by H. Let K, L, M be the midpoints of sides BC, CA, AB, respectively. Prove that the midpoints of segments AH, DK, EL, FM lie on a single circle.

Time: 4 hours and 30 minutes. Each problem is worth 7 points.