Solution 1. Denote E the midpoint of $A D$. Then $|B D|=|D E|=|A E|$. The segment $D M$ is the midsegment of triangle $B C E$, thus $D M \| E C$. Since E is a midpoint of $A D$, line $E C$ pass trough the midpoint of $A M$. From $|B C|=2|A C|$ it follows that the triangle $C A M$ is isosceles, thus $C E \perp A M$. Together with $E C \| D M$, it means that $A M \perp M D$.

Solution 2. Since n has $d(n)$ divisors, and $d(n)-2$ of them are smaller than $d(n)$. It follows that all but one numbers from $1,2, \ldots, d(n)$ divides n.

Suppose that $d(n)>3$. Between numbers $1,2, \ldots, d(n)$ are at least two even numbers, so n has an even divisor and $2 \mid n$. The second largest divisor of an even number n is $n / 2$, which means $2 d(n)=n$.

Suppose $d(n)-1 \mid n=2 d(n)$. Since $d(n)-1 \mid 2 d(n)-2$ we have $d(n)-1 \mid 2$ which is a contradiction with $d(n)>3$.

Thus, $d(n)-1$ is not a divisor of n, which means that all other numbers from $1,2, \ldots, n$ are divisors of n, in particular $d(n)-2 \mid 2 d(n)$. From this it follows $d(n)-2 \mid 4$. Since $d(n)>3$, the only options are $d(n)=4$ and $d(n)=6$. This gives us $n=8$ or $n=12$. It is easy to check that they both are solutions.

It remains to check values $d(n) \leq 3$:

- $d(n)=1$. This is not possible since n must have at least two divisors.
- $d(n)=2$. This is also not possible because, then $d(n)=2$ should be the smallest divisor of n.
- $d(n)=3$. This means that n is the square of the prime. Since $3 \mid n$ we have the only option $n=9$. It is easy to check that this also works.

There are three possible values of n, namely $n=8, n=9$ and $n=12$.

Solution 3. Denote D the intersection of $H P$ and $A B, E$ the intersection of $B H$ and $A Q$, F the intersection of $Q H$ and $A C$. Angles $A D H$ and $A E H$ are right angles since H is the orthocenter of $A B P$. Frotm the definition of Q we also have $|\angle A F H|=90^{c}$ irc. Thus the points A, D, E, H, F lie on the circle with diameter $A H$. Since $A P$ is the angle bisector of $D A F$, we have $|\angle D A P|=|\angle P A F|$, from which it follows $|\angle D H B|=|\angle B H Q|$. Since $P Q \perp B H$, this already means that Q is the reflection of the point P by line $B H$.

Another solution: Right-anled triangles $A P D$ and $H P E$ have equal angles at P and at vertices D and E, to they are similar and have equal angles at A and H. Right-anled triangles $A F Q$ and $H E Q$ have equal angles at Q and at vertices F and E, to they are similar and have equal angles at A and H. This means that $H E B$ is the axes of symmery of $P Q$.

Solution 4. Suppose that a row has exactly i red cells - then there exist exactly i columns with i red cells (precisely those intersecting the row at red cells). Note that $i \neq 0$ (if $i=0$, we would have an entirely red column - contradiction). Considering any of these i columns we see (by analogous argument) that there are exactly i rows with i red cells. Moreover, all these rows (and all the columns) are colored in precisely the same way (i.e. have red cells on the intersections with the same set of columns).

This means that there exist positive numbers $i_{1}, i_{2}, \ldots, i_{k}$ so that $i_{1}+i_{2}+\ldots+i_{k}=n$ and the board has precisely i_{j} columns/rows with exactly i_{j} red cells (for each $j=1,2, \ldots, k$). This means that the total number of red cells, equal to $i_{1}^{2}+i_{2}^{2}+\ldots+i_{k}^{2}$ has the same parity as $n\left(i_{j}\right.$ and i_{j}^{2} have the same parity), and in consequence - the same parity as n^{2}. Therefore the total number of blue cells is even.

Solution 5. We will use the following observation: if after some move the result is in $[n-1, n)$ then after at most n following moves the result will exceed n. Indeed, as long as the result is smaller than n, it will increase by at least $\frac{1}{n}$, so if it did not exceed n within $n-1$ moves, it will after the n-th move since the total increase after n moves will be greater than one.

Applying the observation repeatedly, we get that after at most $1+3$ moves the result is greater than 3 , after at most $1+3+4$ moves the result is greater than 4 etc. after at most

$$
1+3+4+\ldots+24=298
$$

moves the result is greater than 24 . Thus $x>24$.
To find an upper bound for x we use a similar observation: If after some move the result is smaller than n, then after n moves, the result will be smaller than $n+1$. Indeed, the function $t+\frac{1}{t}$ is increasing for $t \geq 1$. Thus, at the point when the result at first exceeds n, it is at most $n+\frac{1}{n}$. After that, it increase by at most $\frac{1}{n}$ at every move, thus after $n-1$ moves it is still smaller than $n+1$

We know that after 3 moves, the result is smaller than 3. Using the observation repeatedly, we get that after $3+3$ moves the result is smaller than 4 , after $3+3+4$ moves the result is smaller than 5 etc. After at most

$$
3+3+4+5+\cdots+24=300
$$

moves the result is smaller than 25 .
Therefore $24<x<25$ which means $\lfloor x\rfloor=24$.

