
Solution 1. Take s = S(n). Note that n + s and n − s differ by 2s, so they have the
same parity. This means that if n − s = k2, then n + s ≥ (k + 2)2, so in particular
2s = (n+ s)− (n− s) ≥ 4k + 4, i.e. s ≥ 2(k + 1).
Now if 100 ≤ n − s < 400, then s ≤ 21 and k ≥ 10, which contradicts the inequality

s ≥ 2(k + 1). If 400 ≤ n − s < 10000, then s ≤ 36 and k ≥ 20, which again gives a
contradiction

In general if for some m ≥ 2 we have 100m ≤ n− s < 100m+1 (i.e. n− s has 2m+ 1 or
2m+2 decimal digits), then k ≥ 10m and s ≤ 18(m+1), which combined with s ≥ 2(k+1)
gives 9(m+ 1) ≥ 10m + 1. This is a contradiction since for m ≥ 2 we have

10m + 1 > 999 . . . 9︸ ︷︷ ︸
m

= 9 · 111 . . . 1︸ ︷︷ ︸
m

> 9(m+ 1).

If n− s has at most 2 digits, then (as it is divisible by 9), it could only be 9, 36, or 81.
Direct verification shows that only for (n, s) = (17, 8) we get a valid solution.

Solution 2. Denote the numbers on the board by a1, a2, . . . , a2023. By writing the string
(ai, ai+1, . . . , ai+2k) in opposite order, the number aj, for j ≤ k + i, exchanges with the
number a2k+2i−j. Indices j and 2k + 2i − j are either both even or both odd. Thus we
can never change the number from even position with the number from odd position.

If we pick numbers ai, ai+1 and ai+2 and write them in opposite order we have exchanged
only numbers ai and ai+2. Clearly by making such operations we can achieve any ordering
of numbers on even positions and also any ordering of the numbers on odd positions.

Therefore, we can reach 1011! · 1012! possible orderings.

Solution 3. Let N(A) be the only person not liked by guest A. Arrange all guests in a
line (A1, A2, . . . , An) in the following way. Choose A1 arbitrarily and put A2 = N(A1).
For i ≥ 2 if N(Ai) = Aj for some j < i, then choose Ai+1 arbitrarily from the remaining
guests. Otherwise take Ai+1 = N(Ai).

Now let the guests enter the room one by one respecting the order of the line. A1

chooses any table, and then every Ai+1 sits by a table with no Ai and no N(Ai+1) (there
is always at least one such table). After everyone is seated, the conditions are clearly met.

Solution 4. Let D be the foot of the perpendicular from A to BC. We will prove that
D is the point of intersection of lines p and q. First, we show that D lies on p. By easy
angle chasing we get that:

|∢MBP | = |∢PBC| = |∢BPM |,
therefore |MB| = |MP |. We know that |∢ADB| = 90◦, which means that D lies on

circle centered at M with radius |AB|
2

= |MB|, so |MD| = |MB| = |MP |. Therefore
triangle MDP is isosceles, |∢MPD| = |∢MDP | and using the fact that points A and D
are symmetric with respect to line MN , we get that

|∢MPD| = |∢MDP | = |∢MAP |,
which means, that PD is tangent to circle AMP at point P . Thus, point D lies on p.
Analogously, we get that D lies on q.

Solution 5. A key observation is that every operation decreases the sum of the numbers
by 1. Negative numbers will never appear. Consequently, after x + y + z operations we
end up with the triple 0, 0, 0 and we are done.

(a) The maximum possible number of operations will be attained for triples with max-
imum sum. Consider a triple x, y, z such that x ≥ y ≥ z and xy + yz + zx = 1000. If
y = z = 1, there is a contradiction 2x+1 = 1000. If y = 2 and z = 1, then 3x+2 = 1000,
again a contradiction. If y = 2 a z = 2, we have x = 249 and we can perform 253



operations. If y = 3 and z = 1, then 4x + 3 = 1000, again a contradiction. If y = 3
and z = 2, we have a contradiction 5x + 6 = 1000. In every other case y + z ≥ 6, hence
x < 1000/(y + z) < 167. Since 1000 > xy ≥ y2, both y and z are at most 31, thus in
every other case x + y + z < 167 + 2 · 31 < 253. Thus the triple (2, 2, 249) allows the
maximum number of operations.

(b) The minimum possible number of operations will be attained for triples with mini-
mum sum. Since (x+ y+ z)2 = x2 + y2 + z2 +2(xy+ yz+ zx) ≥ 3(xy+ yz+ zx) = 3000,
we have x+ y + z ≥ 55. The triple (20, 20, 15) have the sum equal to 55 and sastisfy (∗),
thus it is a triple that allows minimal number of operations.

Remark: Rather than guess the final triple in part (b) one can look at the remainders
modulo 5 and figure out that x, y, z are all divisible by 5. After that, it remains to check
only a few cases and one can show that this triple is, in fact, unique.

Solution 6. Answer:
√
5.

Let AB = a, AD = b. By the problem’s conditions we get BE = 2/a, DF = 2/b and
in consequence

2 = 2[ECF ] = CE · CF = (b− 2/a)(a− 2/b) = ab− 4 + 4/(ab).

Taking x = ab− 3 to be the desired area, we obtain

(3− x) = 4/(x+ 3), so (3− x)(3 + x) = 4,

i.e. x2 = 5.
Remark. After reaching the algebraic form, we can of course just algorithmically solve

a quadratic equation in ab. The funny thing is that the natural auxiliary variable x turns
out to be the one giving the canonical form.


