Solution 1. Take $s=S(n)$. Note that $n+s$ and $n-s$ differ by $2 s$, so they have the same parity. This means that if $n-s=k^{2}$, then $n+s \geq(k+2)^{2}$, so in particular $2 s=(n+s)-(n-s) \geq 4 k+4$, i.e. $s \geq 2(k+1)$.

Now if $100 \leq n-s<400$, then $s \leq 21$ and $k \geq 10$, which contradicts the inequality $s \geq 2(k+1)$. If $400 \leq n-s<10000$, then $s \leq 36$ and $k \geq 20$, which again gives a contradiction

In general if for some $m \geq 2$ we have $100^{m} \leq n-s<100^{m+1}$ (i.e. $n-s$ has $2 m+1$ or $2 m+2$ decimal digits), then $k \geq 10^{m}$ and $s \leq 18(m+1)$, which combined with $s \geq 2(k+1)$ gives $9(m+1) \geq 10^{m}+1$. This is a contradiction since for $m \geq 2$ we have

$$
10^{m}+1>\underbrace{999 \ldots 9}_{m}=9 \cdot \underbrace{111 \ldots 1}_{m}>9(m+1) .
$$

If $n-s$ has at most 2 digits, then (as it is divisible by 9), it could only be 9,36 , or 81 . Direct verification shows that only for $(n, s)=(17,8)$ we get a valid solution.

Solution 2. Denote the numbers on the board by $a_{1}, a_{2}, \ldots, a_{2023}$. By writing the string $\left(a_{i}, a_{i+1}, \ldots, a_{i+2 k}\right)$ in opposite order, the number a_{j}, for $j \leq k+i$, exchanges with the number $a_{2 k+2 i-j}$. Indices j and $2 k+2 i-j$ are either both even or both odd. Thus we can never change the number from even position with the number from odd position.

If we pick numbers a_{i}, a_{i+1} and a_{i+2} and write them in opposite order we have exchanged only numbers a_{i} and a_{i+2}. Clearly by making such operations we can achieve any ordering of numbers on even positions and also any ordering of the numbers on odd positions.

Therefore, we can reach 1011! • 1012! possible orderings.
Solution 3. Let $N(A)$ be the only person not liked by guest A. Arrange all guests in a line $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ in the following way. Choose A_{1} arbitrarily and put $A_{2}=N\left(A_{1}\right)$. For $i \geq 2$ if $N\left(A_{i}\right)=A_{j}$ for some $j<i$, then choose A_{i+1} arbitrarily from the remaining guests. Otherwise take $A_{i+1}=N\left(A_{i}\right)$.

Now let the guests enter the room one by one respecting the order of the line. A_{1} chooses any table, and then every A_{i+1} sits by a table with no A_{i} and no $N\left(A_{i+1}\right)$ (there is always at least one such table). After everyone is seated, the conditions are clearly met.

Solution 4. Let D be the foot of the perpendicular from A to $B C$. We will prove that D is the point of intersection of lines p and q. First, we show that D lies on p. By easy angle chasing we get that:

$$
|\varangle M B P|=|\varangle P B C|=|\varangle B P M|,
$$

therefore $|M B|=|M P|$. We know that $|\varangle A D B|=90^{\circ}$, which means that D lies on circle centered at M with radius $\frac{|A B|}{2}=|M B|$, so $|M D|=|M B|=|M P|$. Therefore triangle $M D P$ is isosceles, $|\varangle M P D|=|\varangle M D P|$ and using the fact that points A and D are symmetric with respect to line $M N$, we get that

$$
|\varangle M P D|=|\varangle M D P|=|\varangle M A P|,
$$

which means, that $P D$ is tangent to circle $A M P$ at point P. Thus, point D lies on p. Analogously, we get that D lies on q.

Solution 5. A key observation is that every operation decreases the sum of the numbers by 1 . Negative numbers will never appear. Consequently, after $x+y+z$ operations we end up with the triple $0,0,0$ and we are done.
(a) The maximum possible number of operations will be attained for triples with maximum sum. Consider a triple x, y, z such that $x \geq y \geq z$ and $x y+y z+z x=1000$. If $y=z=1$, there is a contradiction $2 x+1=1000$. If $y=2$ and $z=1$, then $3 x+2=1000$, again a contradiction. If $y=2$ a $z=2$, we have $x=249$ and we can perform 253
operations. If $y=3$ and $z=1$, then $4 x+3=1000$, again a contradiction. If $y=3$ and $z=2$, we have a contradiction $5 x+6=1000$. In every other case $y+z \geq 6$, hence $x<1000 /(y+z)<167$. Since $1000>x y \geq y^{2}$, both y and z are at most 31, thus in every other case $x+y+z<167+2 \cdot 31<253$. Thus the triple $(2,2,249)$ allows the maximum number of operations.
(b) The minimum possible number of operations will be attained for triples with minimum sum. Since $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x) \geq 3(x y+y z+z x)=3000$, we have $x+y+z \geq 55$. The triple $(20,20,15)$ have the sum equal to 55 and sastisfy $(*)$, thus it is a triple that allows minimal number of operations.

Remark: Rather than guess the final triple in part (b) one can look at the remainders modulo 5 and figure out that x, y, z are all divisible by 5. After that, it remains to check only a few cases and one can show that this triple is, in fact, unique.
Solution 6. Answer: $\sqrt{5}$.
Let $A B=a, A D=b$. By the problem's conditions we get $B E=2 / a, D F=2 / b$ and in consequence

$$
2=2[E C F]=C E \cdot C F=(b-2 / a)(a-2 / b)=a b-4+4 /(a b)
$$

Taking $x=a b-3$ to be the desired area, we obtain

$$
(3-x)=4 /(x+3), \quad \text { so } \quad(3-x)(3+x)=4
$$

i.e. $x^{2}=5$.

Remark. After reaching the algebraic form, we can of course just algorithmically solve a quadratic equation in ab. The funny thing is that the natural auxiliary variable x turns out to be the one giving the canonical form.

