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MO
1. Solve the following system of equations in the domain of real numbers

2x+ byc = 2022,
3y + b2xc = 2023.

(The symbol bac denotes the lower integer part of a real number a, i.e. the greatest
integer not greater than a. E.g. b1,9c = 1 and b−1,1c = −2.) (Jaroslav Švrček)

Solution. Since byc and 2022 are integers, the equation 2x+byc = 2022 implies that
2x is also an integer, so b2xc = 2x. Thus we can eliminate the unknown x by subtracting
the first equation of the system from the second one. We get

3y − byc = 1. (1)

Thanks to (1), 3y is an integer, so it has (according to its remainder after division by
three) one of the forms 3k, 3k + 1 or 3k + 2, where k is an integer. From this it follows
that either y = k, or y = k+ 1

3 , or y = k+ 2
3 , where k = byc. We now discuss these three

cases.
• In the case of y = k, (1) becomes 3k − k = 1 with the non-integer solution k = 1

2 .
• In the case of y = k + 1

3 , (1) is the equation (3k + 1)− k = 1 with a solution k = 0,
which corresponds to y = 1

3 . The original system of equations is then apparently
fulfilled, precisely when 2x = 2022, i. e. x = 1011.
• In the case of y = k + 2

3 , (1) is the equation (3k + 2) − k = 1 with a non-integer
solution k = − 1

2 .

Conclusion. The only solution of the given system is the pair (x, y) = (1011, 1
3 ).

Remark. The equation (1) can also be solved in such a way that we write y in the
form y = k + r, where k = byc and the number r ∈ 〈0, 1) is the so-called fractional part
of y. Substituting into (1) we get the equation

3(k + r)− k = 1 i. e. 2k = 1− 3r.

Since 2k is an integer divisible by two and the number 1−3r apparently lies in the interval
(−2, 1〉, the equality of these numbers occurs in the only case when 2k = 1− 3r = 0, i.e.
k = 0 and r = 1

3 , i.e. y = 1
3 .
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Another solution. The verbal definition attached to the problem formulation tells
us that bac is an integer for which bac ≤ a and at the same time bac+1 > a. So, estimates
a − 1 < bac ≤ a are valid for every real number a. According to them, we get from the
first equation of the given system

2022 ≤ 2x+ y < 2023. (2)

Similarly, from the second equation follows

2023 ≤ 3y + 2x < 2024. (3)

We can combine these inequalities in two ways. Combining the second part of (2)
with the first part of (3) we obtain 2x+ y < 2023 ≤ 3y + 2x, whence from the com-
parison of the outermost expressions follows y > 0. If we modify the first part
of (2) to 2024 ≤ 2x+ y + 2, then together with the second part of (3) we obtain
3y + 2x < 2024 ≤ 2x+ y + 2. This time y < 1 follows from the comparison of the outer-
most expressions.

Together, we got 0 < y < 1, so byc = 0 holds. Thanks to this, the first equation of
the original system is reduced to the form 2x = 2022, which is satisfied only for x = 1011.
By inserting it into the second equation, we get 3y + 2022 = 2023 with the only solution
y = 1

3 which indeed satisfies the condition byc = 0 used in the first equation. The pair
(x, y) = (1011, 1

3 ) is therefore the only solution of the given system.

Remark. Derivation of the equality byc = 0 can be accelerated by the following
approach. We subtract the first given equation from the second one and write the result
in the form

2y = 1 +
(
2x− b2xc

)
−
(
y − byc

)
.

Since the two expressions in round brackets on the right-hand side belong to the interval
〈0, 1), apparently the entire right-hand side is in the interval (0, 2). Thus, 0 < 2y < 2,
i.e. 0 < y < 1 holds, from which byc = 0 follows.

2. Given an acute-angled triangle ABC. The points B′ and C ′ lie on the rays opposite
to CA and BA, respectively, such that |B′C| = |AB| and |C ′B| = |AC|. Prove that
the circumcenter of AB′C ′ lies on the circumcircle of ABC. (Patrik Bak)

Solution (see fig. 1). Since the line segments AB′, AC ′ have the same length |AB|+
|AC|, AB′C ′ is an isosceles triangle with base B′C ′. It means that the perpendicular
bisector of B′C ′ coincides with the bisector of the angle BAC. Let S 6= A be the
intersection of this bisector with the circumcircle of ABC. If we prove that S is
a circumcenter of AB′C ′ we will be finished. Since S lies on the perpendicular bisector
of B′C ′, we have |SB′| = |SC ′|. So, it remains to prove that |SA| = |SC ′|.

From congruence of inscribed angles SAB and SAC it follows that S is the midpoint
of the arc BC, and therefore |BS| = |CS|. From the cyclic quadrilateral ABSC we have
|∠ACS| = 180◦−|∠SBA| = |∠C ′BS|. Together with equality |CA| = |BC ′| we get that
triangles SAC and SC ′B are congruent by condition SAS and therefore |SA| = |SC ′|.
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B
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C ′ B′

Figure 1

Another solution. Let us define the point S as in the first solution. This time
we verify the desired equality |SA| = |SC ′| by showing that S lies on the perpendicular
bisector of AC ′.

In the special case where |AB| = |AC| holds, the midpoint of AC ′ is B (according
to the construction of C ′); therefore it suffices to verify that the angle ABS is right.
However, this follows from the fact that the cyclic quadrilateral ABSC is then composed
of two identical triangles ABS and ACS, so the angles at their opposite vertices B and
C are identical and therefore right.

When |AB| 6= |AC|, we can without loss of generality assume that |AB| > |AC| as
in figure 2. Here P and Q denote the perpendicular projections of S onto lines AB and
AC, respectively. Thanks to our assumption |AB| > |AC| the point P lies inside the
segment AB, while the point Q lies on the opposite ray to the ray CA. We prove that P
is the midpoint of AC ′.

A

B

C

S

C ′ B′

P Q

Figure 2

From the cyclic quadrilateral ABSC we have |∠SBP | = |∠SBA| = 180◦−|∠SCA| =
|∠SCQ|, i.e. the marked angles SBP and SCQ are congruent. Thanks to the right angles
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BPS and CQS, also the angles PSB and QSC have the same size. In addition, we have
|PS| = |QS|, since S lies on the angle bisector of C ′AB′. We thus obtain that triangles
PBS and QCS are congruent according to condition ASA. Hence, equality |BP | = |CQ|
follows. Moreover, from the identical rectangular triangles ASP and ASQ we also have
|AP | = |AQ|, so together it yields

|AP | = |AQ| = |AC|+ |CQ| = |C ′B|+ |BP | = |C ′P |.

Thus, P is indeed the midpoint of AC ′, and the proof is complete.

Another solution (see fig. 3). This time we denote by S the circumcenter of AB′C ′
and we prove that points A, B, S, and C lie on one circle. According to the introduction
of the first solution, we know that AB′C ′ is an isosceles triangle with base B′C ′, hence
its circumcenter S lies on the angle bisector of C ′AB′, that is BAC. The points B
and C therefore lie in the opposite half-planes with the boundary line AS, therefore it is
sufficient to verify |∠ABS| = 180◦ − |∠ACS|.

A

B

C

S

C ′ B′

Figure 3

By equalities |AC ′| = |AB′| and |AS| = |C ′S| = |B′S|, the triangles C ′AS and
AB′S are isosceles and congruent. Thus, if we rotate triangle C ′AS around S about
the oriented angle C ′SA we obtain triangle AB′S. Since B lies on C ′A, C lies on
AB′ and at the same time |C ′B| = |AC|, this rotation maps B onto C and thus the
angle C ′BS to the angle ACS. Therefore, |∠C ′BS| = |∠ACS|, which already follows
|∠ABS| = 180◦ − |∠C ′BS| = 180◦ − |∠ACS| as we promised to show.
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3. For a given positive integer n, consider a rectangular game board 2n×2 and 2n tokens
numbered 1, 2, . . . , 2n on it distributed as in the image on the left. In one turn, one
can move one token from its field to an empty field adjacent by a side. Determine the
minimal number of moves to pass from the original layout to the layout in the right
picture.

1 2 3 2n
. . .

. . .

. . .

→
1232n

. . .

. . .

. . .

(Josef Tkadlec)

Solution. We show that the smallest number of moves is 2n2 + 4n− 2.
We distinguish horizontal moves and vertical moves—depending on whether the token

is moved in a row or in a column. We estimate the number of horizontal and vertical
moves separately.

Let us start with horizontal moves. Mark the columns as well as the tokens on the
game board from left to right by the numbers 1 to 2n. Token 1 is at the beginning
in column 1 and at the end should be in column 2n. Therefore we have to make at least
2n − 1 moves to the right. In general, token k should move from column k to column
2n + 1 − k, and so in case k ≤ n it requires at least 2n + 1 − 2k moves to the right,
while in case k > n at least 2k − 2n − 1 moves to the left. Therefore, the total number
of horizontal moves cannot be less than the sum

(2n− 1) + (2n− 3) + . . .+ 1︸ ︷︷ ︸
for tokens 1 to n

+ 1 + . . .+ (2n− 3) + (2n− 1)︸ ︷︷ ︸
for tokens n+1 to 2n

=

= 2
(
1 + 3 + . . .+ (2n− 1)

)
= 2n2.

Hence there are at least 2n2 horizontal moves.
Now let us focus on vertical moves. We call the token lazy, if it stays in the bottom

line all the time; let’s call the other tokens active. Note that there can be at most one
lazy token—at the end every two tokens are in the bottom row in the opposite order than
they were at the beginning; if therefore both were lazy, they would sometimes have to lie
on the same cell, which is not possible. So, there are at least 2n − 1 active tokens and
there were executed at least 2 vertical moves with each of them—first up and later down.
There must therefore be at least 2 · (2n− 1) = 4n− 2 vertical moves in total.

Together we get that we need at least 2n2 + 4n− 2 moves. In the second part of the
solution, we will show that this number of moves is sufficient.

1 2 3 4 5 6 7 8
→

1
2 3 4 5 6 7 8

→

→
1234

5 6 7 8
→

12345678

Figure 1
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One possible procedure for general n is illustrated in the figure 1 for n = 4. First,
we move all 2n tokens except the first one to the top row. Then we move token 1 from
the first column to the last one (in the bottom row). Subsequently, we move tokens 2 to
n subsequently; each of them first to the bottom row and then to the right to the last
free square (which is its target). Finally we move tokens n+ 1 to 2n subsequently—each
of them first to the left to its target column and then down to the bottom row.

In the procedure just described, the numbers of vertical and horizontal moves coincide
with the estimates we derived in the first part of the solution: we made exactly 4n − 2
vertical moves and we did not make more horizontal moves than necessary with any
token. So the total number of moves in the described procedure is really 2n2 + 4n− 2.

4. Given two odd positive integers k and n. For each two positive integers i, j satisfying
1 ≤ i ≤ k and 1 ≤ j ≤ n Martin wrote the fraction i/j on the board. Determine
the median of all these fractions, that is a real number q such that if we order all
the fractions on the board by their values from smallest to largest (fractions with the
same value in any order), in the middle of this list will be a fraction with value q.

(Martin Melicher)

Solution. We show that the median has the value q = k + 1
n+ 1. In the entire solution,

q denotes this number.
Since the given numbers n and k are odd, the fraction with value q is actually written

on the board—for example, it is a fraction
1
2 (k + 1)
1
2 (n+ 1)

.

According to the comparison with the number q, we call a fraction
. small if its value is less than q,
. mean if its value is equal to q,
. large if its value is greater than q.

The number k·n of all fractions on the board is odd. To show that the middle fraction,
when they are ordered by their values, has the value q, it is sufficient to prove that the
number of small fractions is equal to the number of the large ones. (The latter will also
mean that the number of mean fractions is odd, which again confirms their existence.)

We match the fractions written on the board—we couple each fraction i/j with the
fraction i′/j′ (and vice versa) if and only if i′ = k + 1 − i and j′ = n + 1 − j, which
can indeed be rewritten symmetrically as i + i′ = k + 1 and j + j′ = n + 1. Note that
the inequalities 1 ≤ i ≤ k and 1 ≤ j ≤ n apparently hold if and only if 1 ≤ i′ ≤ k and
1 ≤ j′ ≤ n.

It is obvious that only the fraction
1
2 (k + 1)
1
2 (n+ 1)

is „coupled“ with itself and that all the

other fractions are actually divided into pairs. If we show that every such pair either
consists of one small and one large fraction, or of two mean fractions, we are done.

Thanks to the mentioned symmetry, it suffices to verify that a fraction i′/j′ is small
if and only if the fraction i/j is large. The verification is routine:
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i′

j′
<
k + 1
n+ 1 ⇔

k + 1− i
n+ 1− j <

k + 1
n+ 1 ⇔ (k + 1− i)(n+ 1) < (k + 1)(n+ 1− j) ⇔

⇔ (k + 1)(n+ 1)− i(n+ 1) < (k + 1)(n+ 1)− (k + 1)j ⇔

⇔ i(n+ 1) > (k + 1)j ⇔ i

j
>
k + 1
n+ 1 .

This completes the solution.

Remarks.
1. Instead of adjusting the inequalities at the end of the solution, we could have made

this consideration: Let us take j fractions with value i/j and j′ fractions with value
i′/j′—in total it is j + j′ fractions with the total sum i+ i′, so their arithmetic mean
is (i + i′)/(j + j′) = (k + 1)/(n + 1) = q. However, since we averaged at most two
different values, they either has a common value q or one value less than q and the
other value larger than q.

2. A motivation for the chosen pairing of fractions i/j and i′/j′ provides the following
useful rule: For any quadruple of real numbers a, b, c, and d with b > 0 and d > 0,
the implication

a

b
<
c

d
⇒ a

b
<
a+ c

b+ d
<
c

d
.

holds. With the notation from our solution, we only need to distinguish which of the
two fractions i/j and i′/j′ has a smaller value, and apply this implication. We obtain
that the fraction with smaller value is really small and the fraction with larger value
is really large.

Another solution. Let us look at the problem geometrically—we consider the
plane with the Cartesian coordinate system Oxy. Each fraction i/j that Martin wrote
on the board is represented as a point B with coordinates [j, i].* We thus get exactly
those points B[j, i] of our plane, for which j ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , k}. The
set of these points (that we plotted in the figure for n = 11 a k = 5) we denote by M
and call it „the grid“. It has the shape of a rectangle with vertices [1, 1], [n, 1], [n, k] and
[1, k]. Since numbers n, k are odd, the center S of this rectangle has integer coordinates
j0 = 1

2 (n + 1) and i0 = 1
2 (k + 1). The center S is thus itself a point of the grid M . Let

us add that the line OS has the slope i0/j0 and let us denote the value of this fraction
by q as in the first solution.

O n = 11 x

k
=

5

y

S

B

B′

* Due to this change of order of the numbers i and j the value of the considered fraction i/j equals the
slope of the straight line that connects the origin O[0, 0] with the point B[j, i].
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Note that the grid M is point symmetric with the center S (in the picture we marked
two points B and B′ where each of them is reflection of the other one).* Therefore, there
is the same number of points from M above and below the line OS. Let us clarify
what distinguishes these two equally numerous groups of points „below the line OS“ and
„above the line OS“.

The point B[j, i] of the grid M lies below the line OS if and only if the line OB has
a smaller slope than the line OS, i.e. if i/j < i0/j0 = q holds. Therefore, exactly those
points B[j, i] lie under the line OS that correspond to small fractions i/j, as we called
them in the first solution. Similarly, the lattice points of M above the line OS correspond
to large fractions. So, there is the same number of small and large fractions.

Remark. In the second solution, we used symmetry with the center S[j0, i0]. This
symmetry maps a point B[j, i] to a point B′[j′, i′], where (as known from analytical
geometry) j′ = 2j0 − j and i′ = 2i0 − i hold. After substituting j0 = 1

2 (n + 1) and
i0 = 1

2 (k + 1) we get symmetric equalities j + j′ = n+ 1 and i+ i′ = k + 1. We see that
the pairing of fractions of the first solution exactly corresponds to symmetrical association
of grid points M from the second solution. So, these two solutions are actually based on
the same idea.

5. Given an acute-angled scalene triangle ABC. The angle bisector of the angle BAC
and the perpendicular bisectors of the sides AB, AC define a triangle. Prove that its
orthocenter lies on the median from the vertex A. (Josef Tkadlec)

Solution. Let us denote M the midpoint of AB, N the midpoint of AC, K and L
the intersections of the angle CAB bisector with perpendicular bisectors of AB and AC,
respectively. The intersection of perpendicular bisectors of AB and AC is denoted by O.
The triangle KLO is therefore the triangle from the problem statement. Its orthocenter
we denote by H. All these points are marked in the figure 1 for the case |AB| < |AC|.
(The case |AB| > |AC| looks analogously, the case |AB| = |AC| is excluded by the
specification—then points K, L, O merge into one point.)

A

B C

O
H

M N

K

L

Figure 1

* Although this statement can be considered obvious we come back to it in the note after the solution.
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We have to prove that H lies on the median from the vertex A of triangle ABC. It
is sufficient to show that triangles ABH and ACH have the same area.

SinceHL ⊥ OK ⊥ AB we haveHL ‖ AB. ThereforeH and L have the same distance
from the line AB. However, it is equal to the length of the segment LN , since the point L
lies on the angle bisector of CAB and N is the perpendicular projection of L onto AC.
Hence, we get that the area of ABH is equal to 1

2 |AB|·|LN |. Analogously, we deduce that
area of ACH is equal to 1

2 |AC| · |KM |. It remains to prove |AB| · |LN | = |AC| · |KM |.
For the points K and L lying on the angle bisector of CAB we have |∠MAK| =

|∠NAL|. The rectangular triangles AKM and ALN are therefore similar, and therefore
|KM | : |AM | = |LN | : |AN |. Hence with respect to |AM | = 1

2 |AB| and |AN | = 1
2 |AC|

we get |KM | : |AB| = |LN | : |AC|, i.e. |AB| · |LN | = |AC| · |KM | as we needed to
prove.

Another solution. In addition to the points from the first solution, we also
consider the intersection E of lines AB and KH and intersection F of lines AC and
LH. Again we observe that KH ‖ AC and LH ‖ AB, so the quadrilateral AEHF is a
parallelogram (see fig. 2).

A

B C

O
H

M N

K

L

E F

Figure 2

We use again similarity of triangles AKM and ANL and deduce |KM | : |LN | =
|AM | : |AN | = |AB| : |AC|. Equality of exterior angles at vertices E, F of the
parallelogram AEHF yields |∠KEM | = |∠LFN |. Thus, the rectangular triangles EKM
and FLN are also similar, whence it follows |EM | : |FN | = |KM | : |LN | = |AB| : |AC|.
Hence,

|AE|
|AF |

= |AM | − |EM |
|AN | − |FN |

=
|AB|
|AC| · |AN | −

|AB|
|AC| · |FN |

|AN | − |FN |
= |AB|
|AC|

,

and triangles AEF and ABC are similar by the SAS condition (they coincide in the
angle at the vertex A and in the ratio of the adjacent sides). We thus obtain the decisive
relation EF ‖ BC.

Since in the parallelogram AEHF the line AH bisects the diagonal EF , this line also
bisects the segment BC, which is homothetic with EF with center A. In other words, H
lies on the median from A of the triangle ABC, as we had to prove.

9



Another solution. We consider points K, L, M , N , O, H, E, F from the
second solution. As there, we conclude that AEHF is a parallelogram, and therefore
the midpoint of the segment EF lies on the ray AH. If we prove EF ‖ BC then the
midpoint P of BC also lies on the ray AH.

A

B C

O

M N

L

E F

H

K

P

Figure 3

Due to the construction from the problem statement and the parallelogram AEHF ,
the six angles KAE, KAF , KBA, LCA, AKE and ALF marked in fig. 3 are congruent.
According to the theorem AA, we have 4ABK ∼ 4ACL and 4AKE ∼ 4ALF .
According to the first similarity, |AB| : |AC| = |AK| : |AL|, and by the second similarity
|AK| : |AL| = |AE| : |AF |. Together we get |AB| : |AC| = |AE| : |AF |, so by the SAS
theorem, 4AEF ∼ 4ABC holds, and hence EF ‖ BC, as we promised to prove.

Remark. In all three solutions, we tacitly assumed that H is an interior point of
ABC. This follows from a consideration of the angles in the third solution according
to which triangle AEK has an obtuse interior angle at E, so E lies inside the line
segment AM . Similarly, F lies inside the segment AN . Together, this already means
that the vertex H of the parallelogram AEHF is indeed an interior point of triangle
ABC—because it lies inside parallelogram AMPN .

6. Consider the sequence (an)∞n=1 defined as follows:

a1 = 3 a an = a1a2a3 . . . an−1 − 1 for all n ≥ 2.

Prove that there exist
a) infinitely many primes dividing at least one member of this sequence;
b) infinitely many primes dividing no member of this sequence. (Martin Melicher)

Solution. a) By mathematical induction, we first prove that an ≥ 2 for every n.
For n = 1 and n = 2 this is true because a1 = 3 and a2 = 2. Now suppose
that for some n ≥ 3 the inequality ak ≥ 2 holds for every k < n. Then we have
an = a1a2a3 . . . an−1 − 1 ≥ a1a2 − 1 = 5, so indeed an ≥ 2.

Let us now show that numbers an are pairwise coprime. Indeed, for any two indices
k < n we have ak | a1a2 . . . an−1 = an + 1, whence for the largest common divisor D of
the numbers an and ak we get D | an and at the same time D | an + 1 (because D | ak
and ak | an + 1), so necessarily D = 1, so an and ak are coprime. Due to an ≥ 2 we find
for each index n a prime number, denote it by pn, for which pn | an. Since all an are
pairwise coprime, the prime numbers pn are pairwise different. Thus a) is proved.
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b) If n ≥ 2, then an+1 = a1a2a3 . . . an−1an − 1 = (an + 1)an − 1 = a2
n + an − 1. Next

we work with this expression.
Assume that p | an for some n ≥ 2 and for some prime p. Then an+1 = a2

n+an− 1 ≡
−1 (mod p). From here we get for the next member an+2 = a2

n+1 + an+1 − 1 ≡
(−1)2 + (−1) − 1 ≡ −1 (mod p), and so, by mathematical induction, all members
ak with indices k ≥ n + 1 give the same remainder p− 1 modulo p. If the assumption
p | an is satisfied for some n ≥ 2, we call the prime p bad. Our task is actually to find
infinitely many primes p ≥ 5 that are not bad (we impose the condition p ≥ 5 so that
p | a1 = 3 does not hold).

Let us now consider a prime p satisfying an ≡ 1 (mod p) for some n ≥ 2. Then
an+1 = a2

n + an − 1 ≡ 12 + 1− 1 ≡ 1 (mod p), so using mathematical induction, we get
that all numbers ak with indices k ≥ n give a remainder 1 when dividing by p. Then let
us call such p good. Note that no prime p ≥ 5 is good and bad at the same time—because
it is not possible that for sufficiently large k both relations ak ≡ 1 (mod p) and ak ≡ −1
(mod p) hold. Therefore it is enough to prove that there are infinitely many good primes.

To find good primes we use the sequence (bn)∞n=1 given by the formula bn = an − 1
for each n ≥ 1. It is obvious that b1 = 2, b2 = 1 and

bn+1 = an+1 − 1 = (a2
n + an − 1)− 1 = ((bn + 1)2 + (bn + 1)− 1)− 1 =

= b2
n + 3bn = bn(bn + 3)

for every n ≥ 2. Then a prime number p is good if and only if p | bn for some n ≥ 2. We
thus reached a situation similar to that in part a)—we need to prove existence of infinitely
many primes dividing at least one member of the new sequence (bn)∞n=2 determined by
its first term b2 = 1 and the relation bn+1 = bn(bn + 3) for each n ≥ 2.

We begin with an observation that bk | bn if 2 ≤ k ≤ n. Indeed from bk+1 = bk(bk+3)
we have bk | bk+1 and further by induction bk | bn for every n ≥ k.

We now prove that, under the assumption 2 ≤ k < n, the numbers bk + 3 and bn + 3
are coprime. Indeed, their greatest common divisor D satisfies D | bk + 3 | bk+1 | bn and
at the same time D | bn + 3, so together D | (bn + 3)− bn = 3 and therefore either D = 1
or D = 3. It remains to exclude the value D = 3: due to b2 = 1 and the relationship
bn+1 = bn(bn + 3) it follows by an easy induction bn ≡ 1 (mod 3) for each n ≥ 2. So,
3 - bn, and therefore also 3 - bn + 3, and thus D 6= 3.

Finally, we know that bn ≥ 1 for every n (since an ≥ 2), and thus bn + 3 ≥ 4.
Therefore, for each n we find a prime number pn with the property pn | bn + 3. All these
prime numbers pn are according to the previous paragraph different from each other, in
addition from bn+3 | bn+1 follows pn | bn+1 for every n ≥ 2. So we have found an infinite
sequence of prime numbers dividing at least one member of the sequence (bn)∞n=2. The
proof of part b) is complete.

Remark. We show that the statement from part a) can also be proved by contradic-
tion. Let us assume that there are only finitely many primes that divide some members
of the sequence (an)∞n=1—let us denote them p1, . . . , pk. Surely we can find an index r
so large that among the divisors of the first r terms a1, . . . , ar are all primes p1, . . . , pk.
Then, of course, the following member ar+1 = a1a2 . . . ar − 1 is an integer, not divisible
by any of these prime numbers, and that is (due to ar+1 ≥ 2) a contradiction.
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First Round of the 72nd Czech and Slovak
Mathematical Olympiad
(December 6th, 2022)

MO
1. In the domain of non-negative real numbers solve the system of equations

b3x+ 5y + 7zc = 7z,
b3y + 5z + 7xc = 7x,
b3z + 5x+ 7yc = 7y.

(Tomáš Bárta)

Solution. The first equation of the given system is fulfilled if and only if the following
two conditions are satisfied:
. the number 7z is integer,
. 7z ≤ 3x+ 5y + 7z < 7z + 1, i.e. 3x+ 5y ∈ 〈0, 1).

Similarly, the second and third equations are fulfilled if and only if the numbers 7x and
7y are integers and 3y + 5z, 3z + 5x ∈ 〈0, 1).

Now consider any triple of non-negative numbers (x, y, z), which is the solution to the
problem. The inequalities z ≥ 0 and 3z+5x < 1 imply 5x < 1, whence 7x < 7

5 < 2. This
means that non-negative integer 7x is equal to one of the numbers 0 or 1, i.e., x ∈ {0, 1

7}.
Similarly, y, z ∈ {0, 1

7}.
At this point we have only 23 = 8 triples (x, y, z), which are candidates to solve the

problem, so we could test them individually. However, this testing can be avoided by
noting that if any two of the numbers x, y, z were equal to 1

7 , one one of the expressions
3x+5y, 3y+5z, 3z+5x would be 8

7 , which is greater than 1, and that is a contradiction.
So, at most one of the numbers x, y, z is equal to 1

7 and the others are equal to zero. But
then each of the three (non-negative) expressions 3x + 5y, 3y + 5z, 3z + 5x is at most
equal to 5

7 , so the conditions stated in the beginning of the solution as equivalence are
satisfied and all such triples are solutions.

Conclusion. The problem has exactly 4 solutions

(x, y, z) ∈
{
(0, 0, 0), ( 1

7 , 0, 0), (0, 0, 1
7 , 0), (0, 0, 1

7 )
}
.

2. In the convex pentagon ABCDE |∠CBA| = |∠BAE| = |∠AED| holds. On
the sides AB and AE, there are points P and Q, respectively such that |AP | =
|BC| = |QE| and |AQ| = |BP | = |DE|. Prove that CD ‖ PQ. (Patrik Bak)

Solution. Since |BC| = |AP | = |EQ|, |BP | = |AQ| = |ED| and |∠CBP | =
|∠PAQ| = |∠QED|, the triangles PBC, QAP and DEQ are congruent by the condition
SAS.
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A

P

B

C D

E

Q

Hence |CP | = |PQ| = |QD| and also

|∠CPQ| = 180◦ − |∠BPC| − |∠APQ| = 180◦ − |∠PQA| − |∠EQD| = |∠PQD|.

This means that by the condition SAS, the isosceles equilateral triangles CPQ and DQP
are also congruent. It follows that their altitudes from C and D to the common opposite
side PQ have the same lenghts, and hence CD ‖ PQ.

Remark. The observation that the triangles CPQ and DQP are isosceles and
congruent can also be obtained by reasoning that they are two (not colored above)
corresponding parts of congruent quadrilaterals QABC and DEAP . The congruence
of these quadrilaterals is a consequence of congruences 4QAB ∼= 4DEA and 4ABC ∼=
4EAP .

In the following solution, we specify that the congruence of quadrilaterals QABC
and DEAP is a certain rotation. Thanks to this, we also complete the new solution
differently (without using the altitudes of the congruent triangles).

Another solution. Let S denote the circumcenter of BAE. Obviously, |BA| =
|AE|. Therefore, in the rotation with center S by the oriented angle BSA B → A→ E,
and therefore P → Q.

A

P

B

C D

E

Q

S

Another consequence of B → A → E is the congruence of the four angles SBA,
SAB, SAE and SEA. It follows that the angle bisectors of congruent angles CBA,
BAE and AED are respectively the rays BS, AS and ES. In our rotation is thus the
image of the oriented angle CBS the oriented angle BAS, so with respect to |BC| = |AP |,
C → P holds. The same is true from the oriented angles SAE and SED, the equality
|AQ| = |ED| then leads to Q→ D. Together we have C → P → Q→ D, which implies

13



that the line segments CD and PQ have a common perpendicular bisector—the bisector
of CD bisects the angle CSD, and therefore bisects the angle PSQ, and therefore is also
the perpendicular bisector of PQ. Because of the common bisector, the lines CD and PQ
are parallel.

3. Prove the claim: If we choose any four factors of 720, then one of them divides the
product of the other three. (Jaromír Šimša)

Solution. Given the decomposition 720 = 24 · 32 · 5, the number 720 has exactly
three prime factors: 2, 3 and 5. So, each of its factors is of the form 2α · 3β · 5γ , where α,
β, γ are non-negative integers (satisfying the inequalities α ≤ 4, β ≤ 2 and γ ≤ 1 which
we will not need further). Surely also the product of any three factors of 720 is of the
form 2α · 3β · 5γ with non-negative integers α, β and γ. Considering any two numbers of
this form, the first is a quotient of the second if and only if the values α, β, γ of the first
number do not exceed the corresponding values of the second number.

We prove the problem statement by contradiction. Let us admit that some four
factors of the number 720 have the property that none of them divides the product of
the other three factors. Then each of them contains in its prime decomposition some of
the primes 2, 3, 5 to a higher power than it has in its decomposition the product of the
other three factors, and therefore any one of them. But there are four divisors and only
three prime numbers, and this is the contradiction.

Another solution. We present one of several possible variations of a direct proof.
We use the observations contained in the first paragraph of the previous solution.

Let us choose any four factors of the number 720, call them Numbers. First, we
choose three Numbers, that contain prime factor 2 in powers not exceeding that power of
2 in the fourth Number (if there are more than one such choice, we choose one of them).
Then we select two of these three Numbers that contain prime factor 3 in powers, that do
not exceed power of 3 of the third Number. Of these two Numbers, we finally select the
one that contains the prime factor 5 in a power not exceeding power of 5 of the second
Number. In the last selected number, each p ∈ {2, 3, 5} has a power that does not exceed
at least one of the powers of p in the other three Number. This guarantees that the last
selected Number has the property required by the problem statement.

Czech statistics of the round
Number of participants 518. Each problem was worth 6 points. Average gains from the
problems were successively 4.16, 4.30, 3.52.
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Second Round of the 72nd Czech and Slovak
Mathematical Olympiad

(January 10th, 2023)

MO
1. There are 8 white and 8 black chips on the 8× 5 board as shown on the left picture.

In one turn, one chip can be moved to an empty square adjacent by a side. Determine
the smallest number of turns to pass from the original position to the one in the right
picture.

−→

(Josef Tkadlec)

Solution. In the first part, we prove that we always need at least 64 vertical turns
and at least 8 horizontal turns, so at least 64 + 8 = 72 turns in total.

Obviously, each of the 8 white chips must move at least four times downwards and
each of the 8 black chips at least four times upwards. So in total, we have to do at least
8× 4 + 8× 4 = 64 turns vertically.

In each column, there is one white chip at the beginning over one black chip, and the
reverse is true at the end. So at least one of the two chips must leave its column in some
turn, i.e. move horizontally. Since this is true for each of the 8 columns, we must indeed
make at least 8 turns in the horizontal direction.

In the second part of the solution, we show that 72 turns are sufficient to accomplish
the task. To do this, we divide the given game board 8× 5 into 4 parts 2× 5 and move
the chips in each of them using the 2 + 5 + 4 + 5 + 2 = 18 turns in the five stages shown
in the diagram. The total number of turns is then actually 4 · 18 = 72.

2−→ 5−→ 4−→ 5−→ 2−→

Conclusion. The smallest possible number of turns is equal to 72.

15



Remark. Let us divide the game board into four parts of 2 × 5. We prove that
every solution of the given problem with 72 turns satisfies that no token leaves the part
2× 5 in which it was originally located. Let us only consider the moves in the horizontal
direction—call them h-moves.

Let us label the columns of the game plan 1 through 8 from left to right. Let i→ i+1
and i → i − 1 denote the h-move from column i. to the right and left, respectively. We
are done with the promised proof when we show that the eight individual h-moves from
each solution of 72 moves have (in some order) the form

1→ 2, 2→ 1, 3→ 4, 4→ 3, . . . , 7→ 8, 8→ 7.
Consider an arbitrary solution with 72 moves. Then for each column i there is at least
one h-move i → ∗; because with solution of 72 moves, there are exactly eight h-moves,
there is exactly one move i→ ∗ for each i. There is also exactly one move ∗ → i for each
i, since the number of moves from column i must be equal to the number of moves to
column i. For i = 1 it is necessarily 1→ 2 and 2→ 1 turns, and thus for i = 3 the turns
3→ 4 and 4→ 3, and so on up to i = 7 the turns 7→ 8 and 8→ 7.

2. In the real numbers, solve the system of equations√√
x+ 2 = y − 2,√√
y + 2 = x− 2.

(Radek Horenský)

Solution. Let (x, y) be any solution of the given system. Since
√√

x+ 2 is obviously
positive, we have y > 2 by the first equation. Similarly, the second equation implies x > 2.

Now we prove that the numbers x and y must be equal.* We will use the observation
that the function square root is increasing. If x > y, then√√

x+ 2 >
√√

y + 2,
i.e. y − 2 > x − 2, y > x, and that is a contradiction. The case x < y is eliminated
similarly. The equality of x = y is thus proved.

Let us therefore deal with the (only possible) case x = y next. The original system
of two equations is then obviously reduced to a single equation√√

x+ 2 = x− 2. (1)

After substituting s =
√
x, when x = s2, the equation (1) becomes

√
s+ 2 = s2−2, while

obviously s >
√

2. For each such s, we square the equality to obtain s + 2 = (s2 − 2)2,
which we rewrite in the form s4 − 4s2 − s + 2 = 0. Note that this equation has a root
s = 2. This is confirmed by the decomposition
s4− 4s2− s+ 2 = s2(s2− 4)− (s− 2) = s2(s− 2)(s+ 2)− (s− 2) = (s− 2)(s3 + 2s2− 1),
by which we now show that s = 2 is the only root of the derived equation, that satisfies
our condition s >

√
2. Indeed, for every s >

√
2, s3 + 2s2 − 1 > 0 (this is even true for

s ≥ 1). The only satisfactory value of s = 2 corresponds to the only solution x = s2 = 4
of the equation (1), and therefore to the only solution x = y = 4 of the given problem.

* Let us emphasize that the equality x = y does not follow from the mere symmetry of the system.
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Conclusion. The given system of equations has a unique solution (x, y) = (4, 4).
Remark. Let us give a second possible derivation of x = y.
We begin the new proof of the equality x = y by taking squares of both equations√

x+ 2 = (y − 2)2,
√
y + 2 = (x− 2)2.

By subtracting the second equation from the first we get√
x−√y = (y − 2)2 − (x− 2)2 =

(
(y − 2)− (x− 2)

)(
(y − 2) + (x− 2)

)
=

= (y − x)(x + y − 4) = (√y −
√
x)(√y +

√
x)(x+ y − 4).

Assuming that x 6= y, after dividing the two outer expressions by √y −
√
x 6= 0, we get

−1 = (√y +
√
x)(x+ y − 4).

However, as we know, both x and y are greater than 2, so the right-hand side of the last
equation is positive, which is a contradiction.

Another solution. We again use the observation that both numbers x and y are
greater than 2, and introduce the function f : (2,∞) → (2,∞), f(t) =

√
t + 2 for every

t > 2. The equations from the problem, rewritten in the form√√
x+ 2 + 2 = y,√√
y + 2 + 2 = x

can then be written as a system of equations using the function f
f
(
f(x)

)
= y,

f
(
f(y)

)
= x.

We see that its solutions are just pairs of the form (x, y) =
(
x, f

(
f(x)

))
, where the

number x satisfies the relation f
(
f
(
f
(
f(x)

)))
= x. This is certainly satisfied in the

case where f(x) = x. We show that the equality holds only in this case.
If f(x) < x we have a quadruple of inequalities

f

(
f
(
f
(
f(x)

)))
< f

(
f
(
f(x)

))
< f

(
f(x)

)
< f(x) < x

where the last inequality is obvious and every previous inequality is the consequence of
the immediately following inequality and the fact that f is increasing. Similarly in the
case of f(x) > x we have*

f

(
f
(
f
(
f(x)

)))
> f

(
f
(
f(x)

))
> f

(
f(x)

)
> f(x) > x.

Thus, we have proved equivalence of f
(
f
(
f
(
f(x)

)))
= x and f(x) = x.

It remains to solve the equation f(x) = x with unknown x > 2, which is easy:
f(x) = x ⇔

√
x+ 2 = x ⇔ 0 = (

√
x− 2)(

√
x+ 1) ⇔

√
x = 2 ⇔ x = 4.

We arrive at the same conclusion as in the first solution.
* To the above quadruple of inequalities, let us add that the case f(x) < x occurs for every x > 4

and the case f(x) > x occurs for every x ∈ (2, 4). This follows obviously from the decomposition of
f(x)− x = (2−

√
x)(
√

x + 1), which we will also use in solving the equation f(x) = x.
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Remark. The reasoning about the function f from the second solution can also be
used to solve equation (1) from the first solution without considering the fourth degree
equation. Indeed, the equation (1) can be written as the equation f

(
f(x)

)
= x, which

is, of course, equivalent to the simpler equation f(x) = x, due to the implications

f(x) < x ⇒ f
(
f(x)

)
< f(x) < x and f(x) > x ⇒ f

(
f(x)

)
> f(x) > x,

which is justified in the same way as in the second solution. There we also solved the
simplified equation f(x) = x.

3. In a convex quadrilateral ABCD, |AB| = |BC| = |CD|. Let furthermore, for the
intersection P of its diagonals |∠APD| < 90◦. Let R and S be reflections of A and
D with respect to BD and AC, respectively. Prove that the lines BC and RS are
parallel. (Patrik Bak)

Solution. First we note that the given symmetries imply |BR| = |BA| and
|CS| = |CD|. Hence,

|AB| = |BC| = |CD| = |BR| = |CS|. (1)

By construction, the points R, S are obviously different and the midpoint X of the
segment AR lies on its perpendicular bisector BD and the midpoint Y of the segment
DS lies on its perpendicular bisector AC. In the following paragraph we prove that R
lies inside the angle ABC and S inside the angle DCB, as in our figure. Together, this
means that points A, D, R, S lie inside the same half-plane with the boundary line BC.

A

B C

D

RS
P

 

Y  

X 

The assumption |∠APD| < 90◦ implies |∠APB| > 90◦, which for the interior point P
of the base AC of the isosceles triangle ABC means that |∠ABP | < 1

2 · |∠ABC|; hence
|∠ABR| = 2 · |∠ABP | < |∠ABC|, hence the point R is actually inside the angle ABC.
Analogously from the inequality |∠DPC| > 90◦ for the interior point P of the base BD of
isosceles triangle DCB, we conclude that the point S actually lies inside the angle DCB.

A further consequence of the inequality |∠APD| < 90◦ is that for the marked interior
angles of the right triangles APX and DPY |∠XAP | = 90◦ − |∠APD| = |∠Y DP |, i.e.
|∠RAC| = |∠SDB|.
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Let us return to the equalities (1). According to these, the point B is the circumcenter
of the triangle ARC, which evidently lies in the angle ABC. Therefore, according to
the inscribed angle theorem |∠RBC| = 2 · |∠RAC|. By a similar reasoning about the
circumcenter C of the triangle BSD in the angle BCD we obtain |∠SCB| = 2 · |∠SDB|.

From the last two paragraphs we get the equality |∠RBC| = |∠SCB|. This, together
with (1), leads to the conclusion that (isosceles) triangles RBC and SCB are congruent
by the SAS theorem. Hence, their altitudes from the vertices of R and S to the side BC
have the same length. This already implies that BC ‖ RS.*

Another solution. We show that the points R and S lie on the circumcircle of
BCP . We write the detailed proof only for the point R, for the point S the proof is
analogous.

As in the first solution, we derive (1) and observe that R lies inside the angle ABC.
From the condition |∠APD| < 90◦ it also follows that R lies in the half plane ACD.

According to (1), B is the circumcenter of ARC, whose central angle RBA with the
bisector BD is therefore twice the angle RCA. Therefore the three angles PBA, RBP
and RCP marked in the figure are congruent. Congruence of the last two angles with
respect to the previous paragraph already means that the point R does indeed lie on the
circumcircle of BCP . For the point S the same is true due to the analogous congruence
of the angles PCD, SCP and SBP .

A

B C

D

RS
P

 

It follows from the proof that the points B, C, R, S lie on one circle, while the points
R and S lie in the same half-plane with the boundary line BC. Hence the congruence
of the angles BRC and BSC, which, together with the equality |BC| = |BR| = |CS|,
means that the isosceles triangles RBC and SCB are congruent. The congruence of their
altitudes proves the relation BC ‖ RS.

* Instead of consideration of the congruent triangles CBR and BCS, it suffices to state, that the congruent
segments BR and CS are symmetrically clustered along the axis of the line segment BC.
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4. Find all triples of positive integers a, b, c for which the product

(a+ b)(b+ c)(c+ a)(a+ b+ c+ 2036)

is equal to the power of a prime number with an integer exponent. (Ján Mazák)

Solution. First, let us note that at least one of the numbers a+ b, a+ c and b+ c
must be even. Indeed, two of the three numbers a, b, c have the same parity, so their
sum is even.

If the product we investigate is a power of a prime p, then each of the four factors
must be a power of p. As we already know, one of the first three factors is even, so p = 2.
Each of the four factors is therefore a power of two, which is greater than 1 = 20, since
the numbers a, b, c are positive integers. Hence, each factor is an even number.

Further observe that the numbers a+ b, a+ c, b+ c are all even numbers, if and only
if the numbers a, b, c all have the same parity. Since a+ b+ c+ 2036 is even, a, b and c
must be even numbers. Therefore, we can write a = 2a1, b = 2b1, and c = 2c1, where a1,
b1, c1 are positive integers. Then of course

(a+ b)(a+ c)(b+ c)(a+ b+ c+ 2036) = 24(a1 + b1)(a1 + c1)(b1 + c1)(a1 + b1 + c1 + 1018).

The product of the last four parentheses must be a power of two. The numbers a1, b1, c1
are therefore solutions to the original problem with the constant 2036 replaced by 1018.
For the same reason as above a1, b1, and c1 must be even. We denote by a2, b2 and c2
respectively their halves (they are again positive integers) and we get

(a+ b)(a+ c)(b+ c)(a+ b+ c+ 2036) = 28(a2 + b2)(a2 + c2)(b2 + c2)(a2 + b2 + c2 + 509).

And again, we have the same problem with the constant 509, so the numbers a2, b2, and
c2 necessarily have the same parity. However, since the number 509 is odd, a2, b2 and
c2 must be odd numbers. We see that the triple a2 = b2 = c2 = 1 satisfies the problem
(since 3 + 509 = 512 is a power of two), so the corresponding triple a = b = c = 4 is a
solution to the original problem. We show that it is the only solution.

Suppose that at least one of the numbers a2, b2, c2 is greater than one, let it be c2
without loss of generality. Then, of course, the power of two equal to a2 + c2 is greater
than 2, so it is divisible by four. This means that dividing by four one of the numbers
a2, c2 gives a remainder of 1 and the other a remainder of 3. So the third odd number
b2 has the same remainder when divided by four as one of the numbers a2, c2. The sum
of b2 with this number then has a remainder of 2, and since this sum is also a power
of two, it must be the power of 21. It follows that b2 = 1 and a2 = 1 (the equality of
c2 = 1 is ruled out by our assumption c2 > 1). Thus the remainder 3 when divided by
four necessarily gives c2. But then the number a2 + b2 + c2 + 509 gives remainder 2, so
it is not a power of two, and that is a contradiction.

Conclusion. A single triple (a, b, c) = (4, 4, 4) satisfies the problem statement.
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Another solution. Let a ≥ b ≥ c hold without loss of generality, so then
a + b ≥ c+ a ≥ b+ c ≥ 2. The product (a + b)(b + c)(c + a)(a + b + c + 2036) is a
power of some prime number if and only if powers of that prime are all four factors of
a + b, b + c, c + a, and a + b + c + 2036. So let a + b = pk, c + a = pl, and b + c = pm

for some prime p and non-negative integers k, l and m. For these, by the theorem of the
introduction k ≥ l ≥ m ≥ 1.

If k > l, and hence k − 1 ≥ l and k − 1 ≥ m, with respect to p ≥ 2, we would have

a+ b = pk ≥ pk−1 + pk−1 ≥ pl + pm = (c+ a) + (b+ c) > a+ b,

which is impossible. Necessarily, then, k = l, so a + b = pk = pl = c + a, where b = c.
Then of course pm = b+ c = 2b, and so b = c = pm/2, so 2 | p, e.g. p = 2, and therefore
b = c = 2m−1 and a + b = 2k. Since p = 2, it is also a + b + c + 2036 = 2n for some
integer n, which obviously satisfies the condition 2n > 2036.

By the conclusion of the previous paragraph, the numbers k, m, n satisfy the equality

2n = (a+ b) + c+ 2036 = 2k + 2m−1 + 2036.

Note that dividing by 16 number 2036 gives the remainder of 4, while 2n certainly gives a
remainder of 0 if 2n > 2036.* This implies 2k+2m−1 ≡ 12 (mod 16). The summands 2k
and 2m−1—as powers of two—are congruent to 1, 2, 4, 8 or 0 (mod 16). It is easy to see
that the derived congruence holds only if one of the powers of 2k, 2m−1 yields a residue
of 4 and the other 8. Then k,m− 1 = 2, 3. However, since 2m−1 = b < a + b = 2k, it is
necessarily m− 1 < k, and therefore m− 1 = 2 and k = 3, Hence b = c = 2m−1 = 4 and
a+b = 2k = 8, whence also a = 4. This gives us the only possible triple (a, b, c) = (4, 4, 4).
This is indeed the solution to the problem—the product of the problem is then 8·8·8·2048,
while 8 = 23 and 2048 = 211.

Remark. Why did we solve the equation 2n = 2k + 2m−1 + 2036 reasoning by
divisibility by 16? It was an appropriate way of solving this equation rewritten in the
binary system (which we wanted to avoid), in which each power of two has a form of
100 . . . 0, while the number 2036 has 11-digit notation 111 1111 0100. In order to add two
powers of 2 to get a power again, it is clear that the notation of the lesser power must be
100 and that of the greater power must be 1000, i.e. they are the powers determined by
their remainders when divided by 24 = 16.

Czech statistics of the round
Number of participants 388. Each problem was worth 6 points. Average gains from the
problems were successively 2.90, 2.24, 0.65, 1.52.

* Where the idea of studying divisibility by 16 comes from is explained in the remark after this solution.
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Final Round of the 72nd Czech and Slovak
Mathematical Olympiad

(March 20–21, 2023)

MO
1. Alice and Ben play the game on a board with 72 cells around a circle. First, Ben

chooses some cells and places one chip on each of them. Each round, Alice first
chooses one empty cell and then Ben moves a chip from one of the adjacent cell
onto the chosen one. If Ben fails to do so, the game ends; otherwise, another round
follows. Determine the smallest number of chips for which Ben can guarantee that
the game will last for at least 2023 rounds. (Václav Blažej)

Solution. We show that the smallest possible number of chips is 36.
In the first part, we describe the strategy of Ben in which he can ensure that the game

will never end. At the beginning, Ben places 36 chips on even cells of the game board
and the odd cells he lets empty. Moreover, he firmly divides all 72 cells into 36 pairs of
adjacent cells. Then, Ben is moving the chips in such a way that each of these pairs of
cells contains exactly one chip throughout the whole game: in each round, Alice chooses
an empty cell, and Ben then moves the chip from the second cell of the pair. So the game
never ends.

In the second part of the solution, we assume that Ben initially places fewer than 36
chips on the board. We describe Alice’s strategy for ensuring that the game ends no later
than in the 36th round.

First, Alice imagines that the cells are colored alternately white and black. In each
round, Alice chooses an empty white cell—she always finds one, because there are 36 white
cells, while the chips are fewer. So, Ben will be forced to move a token from one of the
black cell to the white cell. Then, each chip will be moved at most once during the course
of the game. The game will therefore end no later than in the 36th round.

Another solution. We present a different approach to the second part of the
original solution. We again assume that Ben places less than 36 chips on the board, and,
in addition, that no three adjacent cells are empty—otherwise Alice ends the game in the
first round by choosing the middle of those three cells. We show that after at most 34
rounds, Alice can force a situation where three empty adjacent cells exist.*

The empty cells are then divided into several continuous sections, each consisting of
one or two cells. There are at least two sections consisting of two cells—dividing all 72
cells into 36 pairs of adjacent cells, at least one pair remains empty; then we use the
second possible pairing and find another empty pair.

Alice places a marker between each two empty adjacent cells and she corrects the
position of one marker after each round. At the beginning these z ≥ 2 markers divide

* In the remark after this solution we outline how Alice can further refine this strategy to end the game
even sooner, if necessary.
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all 72 cells into z sections. Each of them contains at least 3 cells, it starts and ends with
an empty cell and does not contain two adjacent empty cells. Alice can certainly select
from these segments one, let’s call it U , that has fewer chips than empty cells (since this
inequality holds for their total numbers).

Let k ≥ 1 be such that the selected segment U contains k+1 empty cells and at most
k chips. However, these chips must be exactly k, since any two consecutive empty cells
must be separated by a cell with a chip. Thus, the section U consists of 2k + 1 cells for
which and 2k+ 1 ≤ 72− 3 = 69, i.e. k ≤ 34. In the obvious marking, then, the situation
in the U segment looks like this:

. . . 0 | 0 1 0 1 . . . 0 1 0︸ ︷︷ ︸
U

| 0 . . .

Alice chooses the first empty cell from the left in the U segment in the first round. Ben
is then forced to move the chip from the right. This makes the left marker move two
positions to the right, creating a new U ′ section of length 2k − 1:

. . . 0 | 0 1 0 1 . . . 0 1 0︸ ︷︷ ︸
U

| 0 . . . → . . . 0 1 0 | 0 1 0 1 . . . 0 1 0︸ ︷︷ ︸
U ′

| 0 . . .

In the second round, Alice again selects the first cell from the left in the U ′ section. She
repeats the procedure over and over again until after the k-th round (where, as we know
k ≤ 34), she gets the section between two markers consisting of a single cell, i.e. there
are three adjacent empty cells. Then she brings the game to an end in the next turn.

Remark. It can be proved that there must be at least two segments of odd length.
Alice can then choose the segment U from the previous solution so that it consists of at
most 35 cells. In addition, Alice can modify her strategy so that in the segment U she
points not to the outside cell but to the middle empty cell, or to one of the cells next
to the middle occupied cell. Then, after Ben’s move, a new marker will appear in U
that splits U into two sections and Alice then selects the shorter of them. Repeating this
procedure gives Alice a sequence of sections with number of cells that does not exceed
35, 17, 7, 3, and 1, respectively, so Alice ends the game no later than in the fifth round.

2. Let n ≥ 3 be an integer and a1, a2, . . . , an be the lengths of the sides of an n-gon.
Prove the inequality

a1 + a2 + . . .+ an >
√

2 (a2
1 + a2

2 + . . .+ a2
n).

(Jaroslav Švrček)

Solution. Since a1, . . . , an are the lengths of the sides of an n-gon, the following
inequalities obviously hold

a2 + a3 + . . .+ an > a1,

a1 + a3 + . . .+ an > a2,

...
a1 + a2 + . . .+ an−1 > an.
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In the first inequality, we add a1 to both sides and then we multiply both sides by the
positive number a1. Similarly, in the second inequality, we add a2 to both sides and
multiply them both by a2 and so on. This yields the inequalities

a1(a1 + a2 + . . .+ an) > 2a2
1,

a2(a1 + a2 + . . .+ an) > 2a2
2,

...
an(a1 + a2 + . . .+ an) > 2a2

n.

If we sum up all these inequalities, we get

(a1 + a2 + . . .+ an)(a1 + a2 + . . .+ an) > 2(a2
1 + a2

2 + . . .+ a2
n).

After taking square roots of the two (positive) sides of the last inequality we get the
inequality we were supposed to prove.

Another solution. We are able to assume without loss of generality an ≥
max{a1, a2, . . . , an−1}. From a1 + a2 + . . .+ an−1 > an we get

a1 + a2 + . . .+ an =
√

((a1 + a2 + . . .+ an−1) + an)(a1 + a2 + . . .+ an) >
>
√

(an + an)(a1 + a2 + . . .+ an) =
=
√

2ana1 + 2ana2 + . . .+ 2anan ≥

≥
√

2a2
1 + 2a2

2 + . . .+ 2a2
n.

In the last step we have used the fact that 2anai ≥ 2a2
i for every i ∈ {1, 2, . . . , n} due

to our assumption an ≥ ai > 0. This proves the strict inequality from the problem
statement.

3. In an acute-angled triangle ABC, let us denote H its ortocenter and I its incentre.
Let D be the perpendicular projection of I on the line BC, and E be the image of
point A in symmetry with center I. Furthermore, F is the perpendicular projection
of the point H on the line ED. Prove that the points B, H, F and C lie on one
circle. (Patrik Bak)

Solution. Consider point P such that ABPC is a parallelogram (see figure). Since
HB ⊥ AC ‖ BP , the angle HBP is right. Similarly it follows from HC ⊥ AB ‖ CP
that the angle HCP is also right. Therefore, both points B and C lie on the Thales
circle with a diameter HP .

Surely it is sufficient to consider only the case where H 6= F . We explain why it is
then sufficient to show, that the points D, E, P are collinear. For then the point F lies
on this line, so that the angle HFP is right, and therefore its vertex F lies (together with
the points B, C and H) on the circle with the diameter HP .

Let M be the midpoint of BC. In point reflection with the centre M , denote L the
image of D and J the image of I. It follows from this symmetry, that J is the incenter of
triangle BCP and L is the point where this incircle touches BC. Let KL be the diameter
of this incircle. Thus, J is the midpoint of the segment KL.
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It is well known that D is the tangent point of the excircle of triangle BCP . This
excircle is the image of the incircle in homotety with center P (and with a coefficient
greater than 1). In this homothety is the tangent BC of the excircle the image of the
tangent of the incircle, that is parallel to their common tangent BC but has smaller
distance from P . This tangent, however, passes through the point K, since KL is the
diameter of the incircle perpendicular to both tangents. Therefore, the homothety maps
the point K to the point D, and thus the points D, K, P lie on the same line. This
remains to prove that point E also lies on this line. To do this, it suffices to show that the
lines EP and DK are parallel. These are, however, the sides of triangles AEP and LDK
with the meanlines IM and MJ respectively for which IM ‖ EP and MJ ‖ DK; hence
the desired relation EP ‖ DK follows, since M is the midpoint of the line segment IJ .

4. Consider a sequence (an)∞n=1 of positive integers satisfying for each n ≥ 3 the
condition

an = a1a2 + a2a3 + . . .+ an−2an−1 − 1.

a) Prove that some prime number is a divisor of infinitely many terms of this
sequence.

b) Prove that there are infinitely many such prime numbers. (Tomáš Bárta)

Solution. Since all terms ai are positive integers, we have

a5 = a1a2 + a2a3 + a3a4 − 1 ≥ 1 + 1 + 1− 1 = 2, and therefore a5 6= 1.

The number a5 is thus divisible by at least one prime number.
For every n ≥ 4, the following holds

an = (a1a2 + a2a3 + . . .+ an−3an−2) + an−2an−1 − 1 =
= (an−1 + 1) + an−2an−1 − 1 =
= an−1(an−2 + 1),

and therefore an−1 | an. Let p be any prime divisor of a5, then the relation an−1 | an
implies p | a6, from where p | a7, and so on. By mathematical induction we get p | an
for every n ≥ 5. Thus, the prime p divides infinitely many terms of the given sequence.
This completes the proof of part a).
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Let P denote the set of all primes that divide infinitely many terms of the sequence.
Suppose that the set P is finite, i.e. P = {p1, . . . , pk} for a suitable k. Obviously, for
every i ∈ {1, 2, . . . , k} we find such a term ani that is divisible by pi and ni ≥ 5. Due to
the relation an−1 | an (proved earlier for each n ≥ 4) we have pi | an for all n ≥ ni. If we
now denote N = max(n1, . . . , nk), then aN is divisible by all primes p1, . . . , pk. Therefore,
aN+1 > 1 is not divisible by any primes from P , so there must be a prime q /∈ P satisfying
q | aN + 1. This prime q is then also a divisor of the number aN+2 = aN+1(aN + 1), so
q | an holds for each n ≥ N + 2, and therefore q ∈ P . Thus, we get a contradiction, that
proves the statement in part b).

Remark. From solving part a), we know that every prime number that divides one
member of the sequence starting with the third one, divides all the following members. So
it is enough to prove that there are infinitely many primes that divide at least one member
of a given sequence. This observation is a consequence of a stronger claim, namely that
for every n ≥ 1 is number a2n+3 divisible by at least n different primes. Proof of this
statement will not be given here.

5. In the triangle ABC, let us denote M , N , P the midpoints of the sides BC, CA, AB
respectively and let G be the centroid of ABC. Let the circumcircle of BGP intersects
the line MP at a point K different from P , and let the circumcircle of CGN intersects
the line MN at a point L different from N . Prove |∠BAK| = |∠CAL|.

(Josef Tkadlec)

Solution. Obviously, MP intersects the median BN between points B and G, so
the point K lies on the ray PM and BKGP is cyclic. Similarly, the point L lies on the
ray NM and CLGN is cyclic. Due to MP ‖ CA and MN ‖ BA we have

|∠BPK| = |∠BPM | = |∠BAC| = |∠MNC| = |∠LNC|,

while the two cyclic quadrilaterals imply

|∠BKP | = |∠BGP | = |∠NGC| = |∠NLC|.

A

B
C

M

NP
G

L

K
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We see that triangles BPK and CNL are similar according to the condition AA. By
the condition SAS also triangles ABK and ACL are similar since

(i) |∠ABK| = |∠PBK| = |∠NCL| = |∠ACL|,

(ii) |AB|
|BK|

= 2 · |PB|
|BK|

= 2 · |NC|
|CL|

= |AC|
|CL|

.

Thus, the equality |∠BAK| = |∠CAL| is proved.

6. Let n ≥ 3 be an integer. Consider a grid consisting of n×n squares, whose individual
squares can be either white or black. In each step, we change the colours of the five
squares that make up the pattern

in any rotation. At the beginning, all squares are white. Decide for which n the
squares can be made all black after a finite number of steps. (Jaroslav Zhouf)

Solution. Let us call the individual squares of the grid hereafter fields. We prove
that recoloring* of all n2 white fields in finitely many steps is possible if and only if n > 3
and n is divisible by two or three.

Let us first show that for n = 3 the desired recoloring does not exist. Let us consider
the three fields A, B, C as shown in Figure 1.

B
A C

Figure 1

Let us note that in each step, the field A is recolored and exactly one of the fields B
or C is recolored. If after a certain number of steps all 9 fields are black, the number of
recolorings of B and C would be odd, so the number of recolorings of A would be even,
and therefore, the field A would be white in the end, which is a contradiction. Henceforth,
we will assume that n ≥ 4. We prove the assertion from the introductory paragraph of
the solution in three steps.

(i) If n is even, we use the procedure of Figure 2 repeatedly, in which we in four
steps change colors of exactly 4 fields in a 4 × 4 square. We divide the n × n grid into( 1

2n
)2 squares 2× 2 and change color in each square by the above procedure. For those

squares that are on the border of the grid, we rotate Fig. 2 appropriately to make the
corresponding 4× 4 square lie entirely inside the grid.

* We will thus furthermore preferably to mean both changing the color of a square from white to black
and vice versa.
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−→ −→ −→ −→

Figure 2

(ii) If n is divisible by three, we repeatedly use the procedure on Figure 3, which first
uses the construction 2 twice. In this way, we change colors of 9 fields forming a 3 × 3
square that lies in a 4× 5 rectangle (see the purple bordered area). Similarly to part (i)
we apply this procedure to the individual 3 × 3 squares and for the boundary squares,
we again rotate the situation on the figure 3 appropriately, so that the required 4 × 5
rectangle lies entirely inside the grid.

−→ −→ −→

Figure 3

(iii) We now assume that n is not divisible by two, or three. The fields in each line
we denote by numbers 0, 1, 2, 0, . . . as in the figure 4.

0 1 2 0 1 · · ·...

0 1 2 0 1 · · ·
...

0 1 2 0 1 · · ·

...

0 1 2 0 1 · · ·

...

0 1 2 0 1 · · ·

...
Figure 4

Let ai denote the number of black fields with the number i, i ∈ {0, 1, 2}. Note that
parity of each of the three numbers ai changes in each step, since we change the color
in some of the fields in only three adjacent columns, and in each of them we change the
colour of an odd number of cells. Since at the beginning we have a0 = a1 = a2 = 0, after
any number of steps, a0 ≡ a1 ≡ a2 (mod 2).

By assumption 3 - n, so number of squares with number 0 is by n (one whole
column) larger than number of those with number 2. If after several steps all the boxes
were colored black, we would have a0 − a2 = n, which due to 2 - n would mean that
the numbers a0 and a2 have different parity. But this contradicts the conclusion of
the previous paragraph.

Czech statistics of the round
Number of participants 43. Each problem was worth 7 points. Average gains from the
problems were successively 4.86, 4.77, 0.37, 6.14, 3.53, 1.02.
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