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Problem 1. Given an integer n ≥ 3, determine the smallest positive number k such
that any two points in any n-gon (or at its boundary) in the plane can be connected
by a polygonal path consisting of k line segments contained in the n-gon (including its
boundary). (David Hruška)

Solution. The following example shows that at least m segments are needed for any
2m-gon, m ≥ 2:

Figure 1. Example for m = 5

Indeed, a polygonal path connecting the marked vertices must intersect all the m − 1
dashed line segments and hence it must at least m times cross the vertical line. Since no
two of these intersections can belong to the same line segment (WLOG no segment lies
at the vertical line), we conclude that the path must contain at least m line segments. It
is clear that there is a 2m + 1-gon which needs at least m line segments as well. Hence,
k ≥ bn

2
c (obviously also for n = 3).

Now we prove that this number is always sufficient. Denote the given n-gon by P and
the given points A and B. Fix a triangulation of P and a consider a triangle T containing
A. Cutting P along the sides of T produces the triangle and at at most three disjoint
polygons. Let us take the union of one containing B (if B ∈ T we are done) with T and
replace P by this new polygon. Doing the same for the point B we can assume that A and
B lie in triangles with two sides belonging to the boundary of the r-gon for some r ≤ n.
Let us call the pairs of sides A-sides and B-sides, respectively. Then let us connect A by
a line segment with the common vertex of the A-sides, analogously for B and B-sides.
These two vertices can be connected by a polygonal path p starting at A and ending at
B which has at most b r

2
c line segments – sides of the r-gon. Now we connect A with the

second vertex of p and the penultimate vertex of p with B. That gives a polygonal path
contained in P with the same number of vertices and hence also the desired upper bound.
Sketch of an alternative proof of the upper bound. Consider again a triangulation
of P . The triangulation has n− 2 triangles. We observe that if points A and B belong to
different triangles, which is the only interesting case, they can be connected by a polygonal
path with vertices in different triangles and with every segment except for the first one
and the last one crossing a triangle (without having an endpoint in it) which is crossed
by no other of the segments. It follows that the number k of segments used satisfies the
inequality (k + 1) + (k − 2) ≤ n− 2 and hence k ≤ bn

2
c.
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Problem 2. Let a1, a2, . . ., an be real numbers so that for every k = 1, 2, . . . , n the
following inequality holds:

n · ak ≥
k∑
i=1

a2i .

Prove that there exist at least n
10

indices k so that ak ≤ 1000.
(Sándor Kisfaludi-Bak & Karol Węgrzycki)

Solution.
Step 1. Sort the sequence.
We may assume that the sequence a1, a2, . . . , an is non-decreasing. Indeed, if ak > ak+1

then

n · ak+1 ≥
k+1∑
i=1

a2i ≥
k−1∑
i=1

a2i + a2k+1

and

n · ak > n · ak+1 ≥
k+1∑
i=1

a2i

which shows that swapping ak with ak+1 produces a sequence which still satisfies the
problem conditions.

Let M be the largest index such that aM ≤ 1000. We have to show that M ≥ 1
10
n.

Step 2. Optimize.
We can replace ak by 0 for k < M and the given inequalities still hold. Next, replace

aM+1 by 1000, and recursively, for k = M + 2,M + 3, . . . , n replace ak by the smallest
number such that

n · ak ≥
k∑
i=1

a2i .

Clearly, the smallest such number exists and is equal to the smaller root of the quadratic
equation

n · x =
k−1∑
i=1

a2i + x2 = n · ak−1 + x2,

which happens to be equal to n−
√
n2−4nak−1

2
. (Note in particular that ak−1 < n

4
.) Hence,

replacing ak by the number n−
√
n2−4nak−1

2
we enforce equality n·ak =

∑k
i=1 a

2
i and preserve

inequalities n · ak′ ≥
∑k′

i=1 a
2
i for k′ > k.

Let f(x) = n−
√
n2−4nx
2

. Then aM+1+k = fk(1000) for k = 1, 2, . . . , n. (Here, fk denotes
the k-th iteration of f .)

Step 3. Finish.
Note that if n

4
> x then

f(x) =
n−
√
n2 − 4nx

2
=

n2 − (n2 − 4nx)

2(n+
√
n2 − 4nx)

=
2nx

n+
√
n(n− 4x)

>
2nx

n+ n+(n−4x)
2

=
nx

n− x
.

Let g(x) = nx
n−x . Note that g is increasing on (0, n

4
). Easy induction yields gk(x) = nx

n−kx .
Easy induction gives fk(1000) > gk(1000) > 0 for k = 1, 2, . . . , n−M − 1. In particular

0 < gn−M−1(1000) =
1000n

n− 1000(n−M − 1)
=⇒ n−M−1 < n

1000
=⇒ M >

999

1000
n−1,

which is much stronger bound than we were asked to prove.
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A variant of step 3. Once monotonicity of (ak) and equalities are forced, we have for
every k = 1, 2, . . . , n− 1:

nak+1 = nak + a2k+1 ≥ nak + akak+1.

For each k =M + 1, . . . , n− 1 we then have (as ak > 0):
1

ak
− 1

ak+1

≥ 1

n
.

Adding these inequalities up, we get (after telescoping)
1

aM+1

− 1

an
≥ n−M − 1

n
, so 1000 = aM+1 ≤

n

n−M − 1
.

This means that M ≥ 999
1000

n− 1.
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Problem 3. Given is a convex quadrilateral ABCD with ∠BAD = ∠BCD and
∠ABC < ∠ADC. Point M is the midpoint of segment AC. Prove that there exist points
X and Y on the segments AB and BC, respectively, such that XY ⊥ BD, MX = MY
and ∠XMY = ∠ADC − ∠ABC. (Mykhailo Shtandenko)

Solution. Let P andQ be projections of pointD onto the lines BA and BC respectively.
We claim that PM = MQ and ∠PMQ = 2∠PAD. To simplify angle chasing, let’s
consider only the case when angles BAD and BCD are obtuse and therefore points P
and Q will lie on the extensions of the segments BA and BC beyond A and C respectively
(another case will be analogous with slightly different angle chasing). Let N,K be the
midpoints of the segments AD and CD respectively. Then PN = AN = ND =MK and
KQ = CK = KD =MN . Moreover,

∠MNP = ∠MNA+ ∠ANP = ∠CDA+ 2∠ADP

= ∠CDA+ 2∠CDQ = ∠MKC + ∠CKQ = ∠MKQ,

so triangles MNP and MKQ are congruent, thus PM =MQ. Now,

∠PMQ = ∠PMN + ∠NMK + ∠KMQ

= ∠PMN + ∠ANM + ∠MPN = 180◦ − ∠ANP = 2∠PAD,

so the claim is proved.
Now let the line which passes through P and is parallel to CD intersect segment BC

at point Y (this line intersects segment BC because ∠ABC < ∠CDA), and analogously,
let the line which passes through Q and is parallel to AD intersect segment AB at point
X. We will prove that points X and Y are our desired points.

B

X Y

P

Q
K

N

M

D

A

C

Figure 2.

Since ∠PMQ = 2∠PAD = 2∠PXQ = 2∠DCQ = 2∠PY Q, we deduce that points
X and Y lie on the circle centered at M with radius MP = MQ. So MX = MY and
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PXY Q is cyclic, also PBQD is cyclic, therefore

∠BXY = ∠BQP = 90◦ − ∠PQD = 90◦ − ∠PBD,

which means that XY ⊥ BD. Now,

∠XMY = 2∠XPY = 2(∠PY Q− ∠ABC) = 2(180◦ − ∠BCD)− 2∠ABC

= 360◦ − ∠BAD − ∠BCD = ∠ABC − ∠ABC = ∠ADC − ∠ABC,

as desired.
Second solution. Let E and F be projections of points A and C respectively onto

the line BD. Let X be the point of intersection of MF and AB, and Y be the point of
intersection of ME and BC. We will prove that these points X and Y are the desired
points.

Using Pappus’ Theorem for triples of points A,M,C and F,B,E, we have: X =
AB ∩MF, Y = ME ∩ CB, therefore point of intersection of the lines AE and CF lies
on the line XY . But since AE ‖ CF , we have that XY ⊥ BD. Clearly, projection of
M onto the line EF will coincide with the midpoint of the segment EF , so ME =MF .
However, then ∠XYM = 90◦−∠Y EF = 90◦−∠EFM = ∠Y XM , so XM = YM . Now
we are left with computing the angle between lines ME and MF .

B

X Y

M

D

A

C
N

E

F

A′

C ′

T

Figure 3.

To this end, consider point A′ which is symmetric to A with respect to line BD, and
analogously, let point C ′ be symmetric to C with respect to line BD. Then MF,ME
are midlines of the triangles ACC ′ and ACA′, respectively, so the angle between these
two lines equals to the angle between lines A′C and C ′A. Let T be the point of inter-
section of these two lines. Then, due to symmetry, T lies on BD. Now, since ∠BA′D =
∠BAD = ∠BCD, quadrilateral BCA′D is cyclic, so ∠CTB = ∠BDA′ − ∠DA′T =
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∠BDA−∠DBC. Analogously, ∠ATB = ∠BDC −∠ABD, so summing last two equali-
ties gives us ∠CTA = ∠CDA− ∠ABC, exactly what we wanted to prove.
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Problem 4. Let p, q and r be positive real numbers such that the equation

bpnc+ bqnc+ brnc = n

is satisfied for infinitely many positive integers n.
(a) Prove that p, q and r are rational.
(b) Determine the number of positive integers c such that there exist positive integers

a and b, for which the equation⌊n
a

⌋
+
⌊n
b

⌋
+
⌊ cn
202

⌋
= n

is satisfied for infinitely many positive integers n.

(Walther Janous)

Solution. We will first prove that (p + q + r = 1 ∧ p, , q, , r ∈ Q) is an equivalent
statement for the above.

(a) From
n = bpnc+ bqnc+ brnc ≤ pn+ qn+ rn

for some positive integer n we infer p+ q + r ≥ 1.
Let us write p+ q+ r = 1+ t for some t ≥ 0. Then pn+ qn+ rn = n+ tn, hence

(1) (pn− bpnc) + (qn− bqnc) + (rn− brnc) = tn

holds for infinitely many positive integers n. If t 6= 0, then the right hand side of
(1) would achieve arbitrarily large values whereas the left hand side is bounded
above by 3 — contradiction. Thus t = 0 and p + q + r = 1. Now equation (1)
assures that pn = bpnc, qn = bqnc, rn − brnc holds for infinitely many positive
integers n. In particular, p = bpnc/n, q = bqnc/n, r = brnc/n (for these n) are
all rational numbers.

(b) Next, we observe that if p, q, r are rational numbers with common denominator N
then equation (1) is fulfilled for all integer multiples of N , and hence (p+q+r = 1
and p, q, r ∈ Q) is also a sufficient condition for the given statement.

Hence, for the second part we need to determine the number of positive integers
c such that

1

a
+

1

b
+

c

202
= 1 ⇐⇒ 1

a
+

1

b
=

202− c
202

can be solved with a, b ∈ Z>0. Wlog. we may assume a ≤ b. Furthermore, we see
that 1 ≤ c ≤ 201 and write k := 202 − c, d := gcd(a, b), A := a/d, B := b/d to
arrive at the equivalent equation

1

dA
+

1

dB
=

k

202
⇐⇒ 202(A+B) = kdAB ⇐⇒ 202(A+B)

AB
= kd.

Considering the second equation, we observe that A | 202 · B and B | 202 · A.
Since A and B are coprime, both A and B need to be divisors of 202. The
product AB of two coprime divisors of 202 is again a divisor of 202, so that the
left hand side of the last equation is an integer. It follows that k has to be a
divisor of 202(A + B)/(AB). Conversely, if A | 202, B | 202, gcd(A,B) = 1,
A ≤ B and k is a divisor of 202(A + B)/(AB), then a = dA and b = dB with
d := 202(A+B)/(kAB) fulfill the desired equation.

Checking all possible values for A, B and k gives1 k ∈ D(404) ∪ D(303) ∪
D(204) ∪ D(203) ∪ D(103) (corresponding to (A,B) = (1, 1), (1, 2), (1, 101),

1Here, D(n) denotes the set of all positive divisors of a positive integer n.
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(1, 202), (2, 101)), which together with the condition c > 0 ⇐⇒ k < 202 yields
the 15 possibilities

k ∈ {1, 2, 3, 4, 6, 7, 12, 17, 29, 34, 51, 68, 101, 102, 103}
⇐⇒ c ∈ {201, 200, 199, 198, 196, 195, 190, 185, 173, 168, 151, 134, 101, 100, 99}.
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Problem 5. Let ABC be an acute-angled triangle with orthocenter H. Let D be the
foot of the altitude from A to the line BC. Let T be a point on the circle with diameter
AH such that this circle is internally tangent to the circumcircle of triangle BDT . Let
N be the midpoint of segment AH. Prove that BT ⊥ CN .

(Michal Pecho)

Solution. Let ω be the circle with diameter AH and E the foot of the altitude from
B to AC. Notice that E lies on ω. The power of the point C with respect to circle
(BDEA) is CB ·CD = CE ·CA, which is the power of the point C with respect to circles
(BDT ), so C lies on their radical axis which is their common tangent at T . Therefore
∠CTN = 90◦.

Let U be the second intersection of circles ω and (TNDC). As ∠CUN = 90◦, CU is
tangent to circle ω and we know that CT is also tangent to ω, hence TU ⊥ CN .

Let F be the foot of the altitude from C to AB. Notice that AF is the radical axis of
circles ω and (AFDC), CD is the radical axis of circle (TUDC) and (AFDC), hence B is
the radical center of circles ω, (AFDC) and (TUDC), therefore B also lies on the radical
axis TU of circles ω and (TUDC), which is perpendicular to CN . Hence the problem is
finished.

A

B CD

H

N

U
F

E

T

Another solution. Let P be the intersection of CN with the circle with diameter BC
and let T ′ be the second intersection of ray BP→ with the circle with diameter AH. We
will prove that circles (AHT ′) and (BDT ′) are tangent at point T ′ by showing that CT ′
is their common tangent.

Let E and F be the feet of the altitudes from B and C in triangle ABC, respectively.
Points E, F are also intersection points of circles with diameters AH and BC. By angle-
chasing, we get ∠FBE = ∠NEF = 90◦ − ∠BAC, so NE is tangent to the circle with
diameter BC.

We have NP · NC = NE2 = NT 2 and PT ′ ⊥ NC, so ∠NT ′C = 90◦, which implies
that CT ′ is tangent to the circle with diameter AH.

Points B, D, E, A lie on a circle, so CT ′2 = CE · CA = CD · CB, i.e. CT ′ is tangent
to the circle (BDT ′), hence T ′ = T and BT ⊥ CN , as desired.
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A

B CD

H

N

F
E

T

P

Another solution (via trig). Note that (for the standard angle naming) AD =
BD tan β, HD = BD cot γ, AN = HN = TN = BD tanβ−cot γ

2
, DN = BD tanβ+cot γ

2
,

CD = AD cot γ = BD tan β cot γ, BC = BD(1 + tan β cot γ). The power of C wrt
(AHT ) is

CN2−HN2 = BD2

(
(tan β cot γ)2 +

(
tan β + cot γ

2

)2

−
(
tan β − cot γ

2

)2
)

= · · · = CD·CB,

which is same as power of C wrt (BDT ). It means that CT is tangent to (AHT ) and
(BDT ), so

CT 2 = BD2
(
tan2 β cot2 γ + tan β cot γ

)
.

To prove BT ⊥ CN it is enough to verify that BN2 − BC2 = TN2 − TC2, and both of
these expressions are readily seen to be equal to

BD2

(
1

4
tan2 β +

1

4
cot2 γ − tan2 β cot2 γ − 3

2
tan β cot γ

)
.
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Problem 6. Given is an integer n ≥ 1 and an n× n board, whose all cells are initially
white. Peter the painter walks around the board and recolors the visited cells according
to the following rules. Each walk of Peter starts at the bottom-left corner of the board
and continues as follows:

• if he is standing on a white cell, he paints it black and moves one cell up (or walks
off the board if he is in the top row);
• if he is standing on a black cell, he paints it white and moves one cell to the right
(or walks off the board if he is in the rightmost column).

Peter’s walk ends once he walks off the board. Determine the minimum positive integer
s with the following property: after exactly s walks all the cells of the board will become
white again.

E.g. for n = 3 the states of the board after each of the initial five walks will be:

. . .

(Łukasz Bożyk)

Solution. Answer: the highest power of 2 which is a divisor of 2(2n − 2)!, i.e.

21+ν2((2n−2)!), or equivalently: two to the power n +
∞∑
i=1

⌊
n− 1

2i

⌋
, or equivalently: the

smallest s such that
s

22n−1

(
2n− 2

n− 1

)
is an integer.

Let N = {0, 1, 2, . . .}. Extend the board to N × N (the full quadrant of the checkered
plane), with the bottom-left corner (0, 0). The coloring after a fixed number of walks
extends naturally to the infinite board as well (each walk is considered to have infinitely
many steps ↑/→).

For a fixed s ≥ 0 define the function fs : Z× Z→ N recursively as follows:
• fs(x, y) = 0 if x < 0 or y < 0;
• fs(0, 0) = s;

• for x ≥ 0 and y ≥ 0: fs(x, y) =
⌈
fs(x, y − 1)

2

⌉
+

⌊
fs(x− 1, y)

2

⌋
. (∗)

We will prove that the color of the cell (x, y) after precisely s walks is precisely fs(x, y) mod
2, where 1 is black and 0 is white.

We proceed by induction on x+ y (for a fixed s). If x = y = 0, then the cell (x, y) has
been repainted exactly s times, which agrees with the definition of fs.

Suppose that x+ y ≥ 1 and that the statement holds for all cells whose sum of coordi-
nates is < x+ y. Consider the cell (x, y). It has changed its color precisely the number of
times the painter visited it, and this number (by inductive assumption) is precisely equal
to d1

2
fs(x, y− 1)e from the cell (x, y− 1) (that is the amount of moves (x, y− 1)→ (x, y))

plus b1
2
fs(x−1, y)c from the cell (x−1, y) (that is the amount of moves (x−1, y)→ (x, y)).

This finishes the proof by induction.
Suppose that after exactly s walks the entire n × n board is white, i.e. each of the

numbers fs(x, y) for x < n and y < n is even. It means that the floors and the ceilings
in the recursive definition can be omitted (for the considered range of x’s and y’s) and
we obtain the standard recurrence relation for binomial coefficients (the Pascal’s triangle)
with an extra division by 2 with each increment of the sum x + y. It is easily proved by
induction that

fs(x, y) =
s

2x+y

(
x+ y

x

)
(◦)
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for x < n and y < n. Conversely: if numbers s
2x+y

(
x+y
x

)
are even integers for all 0 ≤ x, y <

n, then they are values of fs (which is again proved by induction on x + y restricted to
the n× n square). It follows that the entire board is white after s > 0 walks if and only
if for each pair 0 ≤ x, y < n the following inequality holds:

ν2(s) + ν2

((
x+ y

x

))
≥ x+ y + 1.

Let s = 22n−1−ν2((
2n−2
n−1 )); it is the smallest positive integer such that fs(n − 1, n − 1) is

even. We will prove that for this choice of s the remaining values of fs in the n×n square
are even as well, and the proof will be concluded. To this end it is enough to show that
all the values fs(x, n − 1) (in the row y = n − 1) are even (all the remaining terms can
be uniquely restored from them by the given recurrence formula, and will be some linear
combinations of even numbers with integer coefficients).

Suppose that ν2(
(
2n−2
n−1

)
) = k. The proof will be finished if we show that for each

i = 0, 1, . . . , k we have

ν2

((
2n− 2− i
n− 1

))
≥ k − i.

But this is clearly true since(
2n− 2− i
n− 1

)
=

(
2n− 2

n− 1

)
· (n− 1)(n− 2) . . . (n− i)
(2n− 2)(2n− 3)(2n− 4) . . . (2n− 1− i)

and each even term of the product in the denominator of the fraction has its corresponding
half in the numerator, so it could eat at most one 2 from the prime factorization, hence

ν2

((
2n− 2− i
n− 1

))
≥ ν2

((
2n− 2

n− 1

))
−
⌈
i

2

⌉
= k −

⌈
i

2

⌉
≥ k − i.


