
CAPS Match 2025 - solutions

ISTA, Austria

(First day – 17 June 2025)

1. Let 𝑎, 𝑏, 𝑐, 𝑑 be nonnegative real numbers for which 𝑎2 + 𝑏2 = 𝑎𝑐 + 𝑏𝑑 holds and
𝑐, 𝑑 are not both zero. Find maximum and minimum value of the expression

𝑎𝑑 + 𝑏𝑐 − 𝑐𝑑

𝑐2 + 𝑑2 .

(Michal Janík, Czech Republic)

Solution 1. We will show that the maximum value is 1
2 and the minimum is −1

2 .
For maximum, after some rearranging, we want to prove

2(𝑎𝑑 + 𝑏𝑐 − 𝑐𝑑) ≤ 𝑐2 + 𝑑2,

or
2(𝑎𝑑 + 𝑏𝑐) ≤ (𝑐 + 𝑑)2.

After adding double the expression 𝑎𝑐 + 𝑏𝑑 = 𝑎2 + 𝑏2 to both sides of this inequality,
we will get equivalent inequality

2(𝑎 + 𝑏)(𝑐 + 𝑑) = 2(𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐 + 𝑏𝑑) ≤ (𝑐 + 𝑑)2 + 2𝑎2 + 2𝑏2,

which can be further rearranged to

0 ≤ (𝑐 + 𝑑)2 − 2(𝑎 + 𝑏)(𝑐 + 𝑑) + (𝑎 + 𝑏)2 + (𝑎 − 𝑏)2 ≤ (𝑐 + 𝑑 − 𝑎 − 𝑏)2 + (𝑎 − 𝑏)2,

which clearly holds. Moreover, this maximal value is reached by 𝑎 = 𝑏 = 𝑐 = 𝑑 > 0.
For the minimum value, notice that if 𝑎 ≥ 𝑐 or 𝑏 ≥ 𝑑 holds, 𝑎𝑑 + 𝑏𝑐 ≥ 𝑎𝑑 ≥ 𝑐𝑑

and the expression is non-negative. So for it to be negative, both 𝑎 < 𝑐, 𝑏 < 𝑑 must
hold and 𝑎2 + 𝑏2 < 𝑎𝑐 + 𝑏𝑑 if 𝑎 and 𝑏 wouldn’t both be 0. As they are equal by
give condition, indeed 𝑎 = 𝑏 = 0 and he minimized expression then becomes − 𝑐𝑑

𝑐2+𝑑2 ,

which has minimum −1
2 as 2𝑐𝑑 ≤ 𝑐2 + 𝑑2. Moreover, this minimal value is reached

by 𝑎 = 𝑏 = 0 and 𝑐 = 𝑑 > 0

Solution 2. Consider the Cartesian coordinate system and in it, points 𝐶 =
(𝑐, 0), 𝐷 = (0, 𝑑) and 𝑋 = (𝑎, 𝑏). The line passing through 𝐶, 𝐷 has equation 𝑑𝑥 +
𝑐𝑦 − 𝑐𝑑 = 0. From analytic geometry, the formula for distance of point (𝑚, 𝑛) to the
line 𝑖𝑥+ 𝑗𝑦 +𝑘 = 0 is known. It is 𝑖𝑚+𝑗𝑛+𝑘√

𝑖2+𝑗2
, where the distance is oriented according

to the vertical position of point (𝑚, 𝑛) with respect to the given line. With this
formula, the distance of point 𝑋 to the line through 𝐶, 𝐷 is

𝑎𝑑 + 𝑏𝑐 − 𝑐𝑑√
𝑐2 + 𝑑2

.

By rearrranging the given condition on 𝑎, 𝑏, 𝑐, 𝑑, we get(︂
𝑎 − 𝑐

2

)︂2
+
(︃

𝑏 − 𝑑

2

)︃2

= 𝑐2 + 𝑑2

4 ,

which means that the point 𝑋 = (𝑎, 𝑏) lies on the circle with centre
(︁

𝑐
2 , 𝑑

2

)︁
and

radius
√

𝑐2+𝑑2

2 , which is exactly the circle with diameter 𝐶𝐷. Such point on circle
with diameter 𝐶𝐷 can be at most radius distant from 𝐴𝐵, so

𝑎𝑑 + 𝑏𝑐 − 𝑐𝑑√
𝑐2 + 𝑑2

≤
√

𝑐2 + 𝑑2

2



and by rearranging we get the inequality we proved in first solution. Note that the
distance from 𝑋 to 𝐶𝐷 is nonnegative unless 𝑋 = (0, 0), as 𝑋 would be above the
line 𝐶𝐷, because it lies in the first quadrant by the nonnegativity and the halfcircle
with diameter 𝐶𝐷 in first quadrant lies entirely above the line 𝐶𝐷. From this, the
minimum value must happen for 𝑋 = (0, 0) which gives −1

2 , as desired.

2. Let {𝑎𝑛}∞
𝑛=1 be a sequence of positive integers such that for every positive inte-

ger 𝑛
𝑎𝑛+1 = (𝑛 + 1) (𝑎𝑛 − 𝑛 + 1) .

In terms of 𝑎1, determine the greatest positive integer 𝑘 such that gcd (𝑎𝑖, 𝑎𝑖+1) = 𝑘
for some positive integer 𝑖 ≥ 2. (Note that gcd(𝑥, 𝑦) denotes the greatest common
divisor of integers 𝑥 and 𝑦.) (Patrik Vrba, Slovakia)

Solution. First, we will prove by induction that 𝑎𝑛 = (𝑎1 − 1) 𝑛!+𝑛 for all 𝑛 ⩾ 1.
The base case 𝑎1 is trivial. Now suppose that the closed form holds for some 𝑎𝑛.
Then

𝑎𝑛+1 = (𝑛 + 1) (((𝑎1 − 1) 𝑛! + 𝑛) − 𝑛 + 1)
𝑎𝑛+1 = (𝑛 + 1) ((𝑎1 − 1) 𝑛! + 1)

𝑎𝑛+1 = (𝑎1 − 1) (𝑛 + 1)! + (𝑛 + 1)
Hence, the proof by induction is complete. For the sake of clarity, let 𝑐 = 𝑎1 − 1.
Let 𝑝 be a prime number dividing gcd (𝑎𝑛, 𝑎𝑛+1) for 𝑛 ⩾ 2. Assume 𝑝 ⩽ 𝑛. Then
𝑐𝑛!+𝑛 ≡ 𝑛 mod 𝑝 however, we have 𝑐(𝑛+1)!+𝑛+1 ≡ 𝑛+1 mod 𝑝 thus we conclude
𝑝 > 𝑛. We have 𝑎𝑛+1 = (𝑛 + 1)(𝑐𝑛! + 1) so then 𝑝 | (𝑛 + 1)(𝑐𝑛! + 1). Assume 𝑝
divides 𝑐𝑛!+1. Then 𝑐𝑛!+𝑛 ≡ 𝑐𝑛!+1 mod 𝑝, which implies 𝑛 ≡ 1 mod 𝑝, which is a
contradiction since 𝑝 > 𝑛. So either gcd(𝑎𝑛, 𝑎𝑛+1) = 1 or 𝑝 = 𝑛 + 1 = gcd(𝑎𝑛, 𝑎𝑛+1).

Now suppose 𝑝 = 𝑛 + 1, notice that in this case 𝑝 ≥ 3. Then, according to
Wilson’s theorem 𝑝 | 𝑛! + 1 so we have 𝑝 | 𝑛! + 1 | 𝑐𝑛! + 𝑐, which implies 𝑝 |
𝑐𝑛!+𝑐+𝑛−𝑛 =⇒ 𝑝 | 𝑐−𝑛 =⇒ 𝑝 | 𝑐+1, which is however, equal to 𝑎1. The chain of
thoughts is reversible so we obtain gcd (𝑎𝑝−1, 𝑎𝑝) = 𝑝 if and only if 𝑝 | 𝑎1. Therefore,
the answer is that 𝑘 is the biggest odd prime divisor of 𝑎1 or 1 if 𝑎1 is a power of 2.

3. Maryam and Artur play a game on a board, taking turns. At the beginning, the
polynomial 𝑋𝑌 − 1 is written on the board. Artur is the first to make a move. In
each move, the player replaces the polynomial 𝑃 (𝑋, 𝑌 ) on the board with one of
the following polynomials of their choice:

(a) 𝑋 · 𝑃 (𝑋, 𝑌 )

(b) 𝑌 · 𝑃 (𝑋, 𝑌 )

(c) 𝑃 (𝑋, 𝑌 ) + 𝑎, where 𝑎 ∈ (−∞, 2025] is an arbitrary integer.

The game stops after both players have made 2025 moves. Let 𝑄(𝑋, 𝑌 ) be the
polynomial on the board after the game ends. Maryam wins if the equation 𝑄(𝑥, 𝑦) =
0 has a finite and odd number of positive integer solutions (𝑥, 𝑦). Prove that Maryam
can always win the game, no matter how Artur plays. (Daniel Holmes, Austria)

Solution. We claim that Maryam can always achieve that the polynomial on the
board at the end of her turn has the form 𝑃 (𝑋, 𝑌 ) = 𝑓(𝑋𝑌 ) where 𝑓 ∈ Z[𝑇 ] can
be written as

𝑇 𝑛 −
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑇
𝑖 for integers 𝑛 > 0 and 𝑎𝑖 ≥ 0, not all of them zero. (1)



As any such 𝑓 fulfills 𝑓(𝑥)
𝑥𝑛 = 1 −∑︀𝑛−1

𝑖=0
𝑎𝑖

𝑥𝑛−𝑖 for all positive real numbers 𝑥, which is
a strictly increasing function on (0, ∞) with arbitrarily small real values near 0 and
tending to 1 for 𝑥 → ∞, it has exactly one positive real root 𝑟. We claim further that
Maryam can choose 𝑟 to be a perfect (integer) square. (Initially, 𝑃 (𝑋, 𝑌 ) = 𝑓(𝑋𝑌 )
with 𝑓 = 𝑇 − 1.) Maryam proceeds as follows:

• If Artur multiplies with 𝑋, Maryam multiplies with 𝑌 and if Artur multiplies
with 𝑌 , Maryam multiplies with 𝑋. If initially, 𝑃 (𝑋, 𝑌 ) = 𝑓(𝑋𝑌 ) was on the
board, then the resulting polynomial is 𝑋𝑌 𝑓(𝑋𝑌 ), so 𝑓 changes to 𝑇 · 𝑓 .

• If Artur adds an integer 0 ≤ 𝑎 ≤ 2025, Maryam adds the number −𝑎 ≤ 2025.
The polynomial remains unchanged.

• If Artur adds an integer 𝑎 < 0, write 𝐴(𝑋𝑌 ) for the new polynomial on the
board, where 𝐴 ∈ Z[𝑇 ] is of the form (1). By the discussion above, 𝐴 has a
unique positive real root 𝑢. As 𝐴(𝑥) > 0 for all 𝑥 > 𝑢, Maryam can choose an
integer 𝑐 > 𝑢 (e.g. 𝑐 = ⌊𝑢⌋ + 1) and add the negative integer −𝐴(𝑐2) to the
polynomial 𝐴 on the board. Then the new polynomial on the board has again
the form (1) and (by construction) 𝑐2 ∈ Z>0 as the only positive real root.

Hence, Maryam can always achieve that 𝑄 (the polynomial in the end of the game)
satisfies 𝑄 = 𝑔(𝑋𝑌 ) where 𝑔 is of the form (1) and has a perfect square 𝑠2, 𝑠 ∈ Z>0,
as unique positive real root. Now for all pairs of positive integers (𝑥, 𝑦), we have
𝑄(𝑥, 𝑦) = 0 ⇐⇒ 𝑔(𝑥𝑦) = 0 ⇐⇒ 𝑥𝑦 = 𝑠2 and it is well known that the number of
solutions (𝑥, 𝑦) to the last equation is (finite and) odd. (Pairs (𝑥, 𝑦) and (𝑦, 𝑥) with
𝑥 ̸= 𝑦 correspond and (𝑠, 𝑠) is the only fixed point in this involution, giving an odd
number overall.) Hence, Maryam can always win, independent of Artur’s moves.



CAPS Match 2025 - solutions

ISTA, Austria

(Second day – 18 June 2025)

4. The plane was divided by vertical and horizontal lines into unit squares. Deter-
mine whether it is possible to write integers into cells of this infinite grid so that:

(i) every cell contains exactly one integer

(ii) every integer appears exactly once

(iii) for every two cells 𝐴 and 𝐵 sharing exactly one vertex, if they contain integers
𝑎 and 𝑏 then at least one of the cells sharing a common side with both 𝐴 and
𝐵 contains an integer between 𝑎 and 𝑏.

(Marta Strzelecka and Michał Strzelecki, Poland)

Solution. Yes, this is possible. Consider the spiral depicted below and write
consecutive integers along the spiral:
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We claim that this works. Consider any two cells 𝐴 and 𝐵 sharing exactly one
vertex. Consider the 2 × 2 square containing 𝐴 and 𝐵. If the 2 × 2 square contains
a ”corner” of the spiral then for some 𝑛 and 𝑘 the numbers in that 2 × 2 square are
arranged in the following way (up to rotation or reflection):

n

n+ 1 k

n− 1

and therefore the conditions are satisfied no matter which opposite cells of the
2 × 2 square 𝐴 and 𝐵 are. Indeed, if 𝐴 and 𝐵 contain 𝑛 − 1 and 𝑛 + 1, then the
good cell is the one containing 𝑛. If 𝐴 and 𝐵 contain 𝑛 and 𝑘 and 𝑛 < 𝑘 then
𝑛 < 𝑛 + 1 < 𝑘 and the good cell is the one containing 𝑛 + 1. If 𝐴 and 𝐵 contain 𝑛
and 𝑘 and 𝑛 > 𝑘 then 𝑘 < 𝑛 − 1 < 𝑛 and the good cell is the one containing 𝑛 − 1.

Otherwise, the numbers are arranged in the following way (again, up to rotation
or reflection):

n

k + 1 k

n+ 1



for some 𝑛, 𝑘, and again, the conditions are satisfied. Indeed, without loss of
generality, assume 𝑛 < 𝑘. Then 𝑛 < 𝑛 + 1 < 𝑘 < 𝑘 + 1. If 𝐴 and 𝐵 contain 𝑛 and
𝑘 then the good cell is the one containing 𝑛 + 1. Otherwise, 𝐴 and 𝐵 contain 𝑛 + 1
and 𝑘 + 1, and the good cell is the one containing 𝑘.

Alternatively, one can notice that condition (iii) from the problem statement
means that we can orient each square 2 × 2 according to the increasing numbers as
suggested in the picture below:

1 2

4 3

12

3 4

With this observation, it’s relatively easy to check that the spiral construction sat-
isfies this.

5. We are given an acute triangle 𝐴𝐵𝐶. Point 𝐷 lies in the halfplane 𝐴𝐵 contain-
ing 𝐶 and satisfies 𝐷𝐵 ⊥ 𝐴𝐵 and ∠𝐴𝐷𝐵 = 45∘ + 1

2∠𝐴𝐶𝐵. Similarly, 𝐸 lies in the
halfplane 𝐴𝐶 containing 𝐵 and satisfies 𝐴𝐶 ⊥ 𝐸𝐶 and ∠𝐴𝐸𝐶 = 45∘ + 1

2∠𝐴𝐵𝐶.
Let 𝐹 be the reflection of 𝐴 in the midpoint of arc 𝐵𝐴𝐶 (containing point 𝐴). Prove
that points 𝐴, 𝐷, 𝐸, 𝐹 are concyclic. (Patrik Bak, Slovakia)

Solution 1. Denote ∠𝐴𝐵𝐶 = 𝛽 and ∠𝐴𝐶𝐵 = 𝛾. The conditions translate
as ∠𝐵𝐴𝐷 = 45∘ − 𝛾 and ∠𝐸𝐴𝐶 = 45∘ − 𝛽. Denote by 𝐺 the intersection point
of 𝐵𝐷 and 𝐶𝐸. Clearly ∠𝐵𝐴𝐺 = 90∘ − 𝛾 = 2∠𝐵𝐴𝐷, and so 𝐴𝐷 is the angle
bisector of 𝐵𝐴𝐺. Similarly, 𝐴𝐸 is the angle bisector of 𝐺𝐴𝐶.

Let 𝐷′, 𝐸 ′ be the midpoints of 𝐴𝐷, 𝐴𝐸, respectively. It is enough to show that
the circle through 𝐴, 𝐷′, 𝐸 ′ also passes through the midpoint of arc 𝐵𝐴𝐶. Consider
the circumcircle of 𝐴𝐷′𝐸 ′ and denote its second interesection points with 𝐴𝐵, 𝐴𝐺,
𝐴𝐶 by 𝑃 , 𝑄, 𝑅, respectively.
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E′

Q
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R

First, we will show that 𝐵𝑃 = 𝐶𝑅. Notice that due ∠𝐴𝐵𝐷 being right, we have
that 𝐷′ is the circumcenter of 𝐴𝐵𝐷, and so 𝐷′𝐵 = 𝐷′𝐴. Then we get ∠𝐷′𝐵𝐴 =
∠𝑃𝐴𝐷′ = ∠𝐷′𝐴𝑄, and also ∠𝐴𝑄𝐷′ = ∠𝐵𝑃𝐷′. Together with 𝐷′𝐵 = 𝐷′𝐴, we
have that triangles 𝐷′𝐴𝑄 and 𝐷′𝐵𝑃 are congruent, and so 𝐵𝑃 = 𝐴𝑄. Similarly,
we can show 𝐶𝑅 = 𝐴𝑄, and so 𝐵𝑃 = 𝐶𝑅 as we wanted.

We will now show that the circle through 𝐴, 𝑃, 𝑅 passes through the midpoint of
arc 𝐵𝐴𝐶. Denote by 𝑀 the second intersection of this circle with the circle 𝐴𝐵𝐶.



Clearly ∠𝑀𝐵𝑃 = ∠𝑀𝐶𝑅 and ∠𝑀𝑃𝐴 = ∠𝑀𝑅𝐴, and also 𝐵𝑃 = 𝑅𝐶, so triangle
𝑀𝐵𝑃 and 𝑀𝐶𝑅 are congurent, giving 𝑀𝐵 = 𝑀𝐷, which is enough.
Solution 2. Similarly to the previous solution, we consider homothety with center
𝐴 and coefficient 1/2 to obtain points 𝐷′, 𝐸 ′, 𝑀 and prove that 𝐴𝐷′𝐵, 𝐴𝐸 ′𝐶, 𝐵𝑀𝐶
are isosceles triangles. Moreover, by angle chasing we can get ∠𝐵𝑀𝐶 = 𝛼, ∠𝐴𝐷′𝐵 =
90∘ + 𝛾 and ∠𝐴𝐸 ′𝐶 = 90∘ + 𝛽. Let us notice that the sum of these angles ∠𝐵𝑀𝐶 +
∠𝐴𝐷′𝐵 + ∠𝐴𝐸 ′𝐶 = 360∘. We may view these three isosceles triangles as three
rotations (for example, triangle 𝐴𝐷′𝐵 corresponds to the rotation around 𝐷′ by
angle 𝐴𝐷′𝐵 and sends point 𝐵 to point 𝐴). We will call them green, blue, and red.

Because the sum of the three angles is 360∘, the composition of these three
rotations is a translation. Moreover, if we follow the image of 𝐶 we notice that
green rotation maps it to 𝐵, then blue maps it to 𝐴, and finally red maps it back
to 𝐶. Hence, the translation is actually an identity. Let 𝑀 ′ be the image of 𝑀
under the blue rotation. Then 𝑀𝐷′𝑀 ′ is similar to 𝐴𝐷′𝐵. And because 𝑀 is the
center of the green rotation, the composition of blue and red rotations has to map
𝑀 back to 𝑀 . Hence, 𝑀 ′𝐸 ′𝑀 has to be similar to 𝐴𝐸 ′𝐶. And so ∠𝐷′𝑀𝐸 ′ =
∠𝐵𝐴𝐷′ + ∠𝐶𝐴𝐸 ′ = 𝛼/2 = ∠𝐷′𝐴𝐸 ′. Thus, 𝐴𝑀𝐸 ′𝐷′ is cyclic and we are done.

Solution 3. [sketch] Let 𝐺, 𝐷′, 𝐸 ′ be as in the original solution. Denote 𝑀
the midpoint of arc 𝐵𝐴𝐶. Moreover, let the line 𝐴𝑀 meet the lines 𝐵𝐷 and
𝐸𝐶 at 𝑋 and 𝑌 , respectively. Since 𝐴𝑀 is the external angle bisector, we get
∠𝑋𝐴𝐵 = ∠𝐶𝐴𝑌 = 90∘ − 𝛼/2. Therefore, ∠𝐺𝑋𝑌 = ∠𝐺𝑌 𝑋 = 𝛼/2, so the triangle
𝐺𝑋𝑌 is isosceles. Since 𝐴𝐺 is a diameter of the circumcircle of 𝐴𝐵𝐶, 𝐺𝑀 ⊥ 𝑋𝑌 ,
thus 𝑀 is the midpoint 𝑋𝑌 .

We can calculate ∠𝑋𝐴𝐷 = 180∘ − 𝛼/2 − (45∘ + 𝛾/2) = 45∘ + 𝛽/2. Similarly
∠𝐶𝐴𝑌 = 45∘ + 𝛽/2. This gives us that the triangles 𝐷𝐴𝑋 and 𝐴𝐶𝑌 are spirally
similar. From this spiral similarity we get that also 𝐷′𝐸 ′𝑀 is similar to them. So,
∠𝐷′𝑀𝐸 ′ = 𝛼/2.

We can calculate ∠𝐷′𝐴𝐸 ′ = 180∘ − (45∘ + 𝛽/2) − (45∘ + 𝛾/2) = 𝛼/2, hence 𝐴,
𝐷′, 𝐸 ′, 𝑀 are concyclic. Homothety with center 𝐴 and coefficient 2 maps this circle
to the desired circle.



6. Find all functions 𝑓 : (0, ∞) → [0, ∞) such that for all 𝑥, 𝑦 ∈ (0, ∞) it holds that

𝑓(𝑥 + 𝑦𝑓(𝑥)) = 𝑓(𝑥)𝑓(𝑥 + 𝑦).

(Dominik Martin Rigász, Slovakia)

Solution. Any 𝑓 such that 𝑓(𝑥) ∈ {0, 1} for all 𝑥 ∈ R+works. Furthermore, any
𝑓 such that

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0 or 1 𝑥 ∈ (0, 𝑥0)
𝑐 𝑥 = 𝑥0

0 𝑥 ∈ (𝑥0, ∞)
works as well, where 𝑥0 > 0, 𝑐 ≥ 0 are arbitrary constants. We now show that these
are the only solutions. For 𝑓(𝑥) ̸= 0 easy both-ways induction yields that for all
𝑛 ∈ Z it is true that

𝑓(𝑥)𝑛𝑓(𝑥 + 𝑦) = 𝑓 (𝑥 + 𝑦𝑓(𝑥)𝑛) (2)
Now assume there exist 0 < 𝑥0 < 𝑥1 such that 𝑓 (𝑥0) /∈ {0, 1} and 𝑓 (𝑥1) ̸= 0 (if

such a pair doesn’t exist then 𝑓 must have one of the two forms described above).
Then substituting [𝑥0, 𝑥1 − 𝑥0] into (1) and manipulating 𝑛 (in particular we consider
𝑛 → −∞ if 𝑓 (𝑥0) < 1, and 𝑛 → +∞ if 𝑓 (𝑥0) > 1 ) yields that 𝑓 reaches arbitrarily
large values at arbitrarily large arguments. Hence, for every pair of positive reals
𝑐1, 𝑐2 there are infinitely many 𝑥 such that 𝑥 > 𝑐1 and 𝑓(𝑥) > 𝑐2. Call this fact (⋆).

We now multiply the given equation by 𝑓(𝑥 + 𝑦 + 𝑧), where 𝑧 is a positive real
number, to get

𝑓(𝑥 + 𝑦 + 𝑧)𝑓(𝑥 + 𝑦𝑓(𝑥)) = 𝑓(𝑥)𝑓(𝑥 + 𝑦)𝑓(𝑥 + 𝑦 + 𝑧) = 𝑓(𝑥)𝑓(𝑥 + 𝑦 + 𝑧𝑓(𝑥 + 𝑦)),

where we’ve used the property from the problem statement to obtain the second
equality. We now choose 𝑧 such that 𝑧 > 𝑦𝑓(𝑥) − 𝑦. Then 𝑥 + 𝑦 + 𝑧 > 𝑥 + 𝑦𝑓(𝑥).
Hence, we can apply the problem statement on both the left-most side and the
right-most side of the above equation to get

𝑓(𝑥 + 𝑦 + 𝑧)𝑓(𝑥 + 𝑦𝑓(𝑥)) = 𝑓(𝑥 + 𝑦𝑓(𝑥) + (𝑧 − 𝑦𝑓(𝑥) + 𝑦)𝑓(𝑥 + 𝑦𝑓(𝑥)))
𝑓(𝑥)𝑓(𝑥 + 𝑦 + 𝑧𝑓(𝑥 + 𝑦)) = 𝑓(𝑥 + (𝑦 + 𝑧𝑓(𝑥 + 𝑦))𝑓(𝑥))

Together with 𝑓(𝑥 + 𝑦𝑓(𝑥)) = 𝑓(𝑥)𝑓(𝑥 + 𝑦), since the LHS’s are equal in the
above two equations, we get



𝑓(𝑥 + 𝑦𝑓(𝑥) + (𝑧 − 𝑦𝑓(𝑥) + 𝑦)𝑓(𝑥)𝑓(𝑥 + 𝑦)) = 𝑓(𝑥 + (𝑦 + 𝑧𝑓(𝑥 + 𝑦))𝑓(𝑥)). (3)

If the arguments in the above equation were equal, then by simplification, this
would yield the equivalent equality

(−𝑦𝑓(𝑥) + 𝑦)𝑓(𝑥)𝑓(𝑥 + 𝑦) = 0. (4)
We now choose 𝑥0, 𝑦0 such that 𝑓 (𝑥0) /∈ {0, 1} and 𝑓 (𝑥0 + 𝑦0) ̸= 0 and sub-

stitute [𝑥0, 𝑦0] into (2). Note that for this pair, equation (3) does not hold, and
hence the arguments in (2) are always distinct. In particular, the arguments on
both sides of (2) are linear functions in 𝑧 with the same positive gradient (namely
𝑓 (𝑥0) 𝑓 (𝑥0 + 𝑦0) ), but different 𝑦-intercept values. Since (2) holds for all large 𝑧
(namely all 𝑧 > 𝑦0𝑓 (𝑥0) − 𝑦0 ), it follows that 𝑓 is eventually periodic. Hence, there
are constants 𝐶, 𝑃 > 0 (dependent on 𝑥0, 𝑦0 ), such that 𝑓(𝑥) = 𝑓(𝑥 + 𝑃 ) for all
𝑥 > 𝐶.

By (⋆) we know that there is an 𝑥2 > 𝐶 such that 𝑓 (𝑥2) /∈ {0, 1}. Then by
comparing [𝑥2, 𝑦] with [𝑥2, 𝑦 + 𝑃 ] in the original equation we get

𝑓 (𝑥2 + 𝑦𝑓 (𝑥2)) = 𝑓 (𝑥2 + 𝑦𝑓 (𝑥2) + 𝑃𝑓 (𝑥2)) ,

since the RHS’s remains the same (since 𝑥2 + 𝑦 > 𝐶 ). Now let 𝑦 = 𝑃
𝑓(𝑥2) in the

above, to obtain
𝑓 (𝑥2 + 𝑃 ) = 𝑓 (𝑥2 + 𝑃 + 𝑃𝑓 (𝑥2))

and hence 𝑓 (𝑥2) = 𝑓 (𝑥2 + 𝑃𝑓 (𝑥2)) = 𝑓 (𝑥2) 𝑓 (𝑥2 + 𝑃 ) = 𝑓 (𝑥2)2, clear contradic-
tion.


