
75. ročník Matematické olympiády (2025/2026)

Úlohy krajského kola kategorie A

1. Pro reálná čísla x a y jsou čísla x + y a x2 + y2 celá. Je nutně i číslo x3 + y3 celé?

2. Dokažte, že pro nekonečně mnoho celých čísel D existují dvě nesoudělná kladná celá
čísla a, b, pro která je D největším společným dělitelem čísel 5a2 + b a 5b2 + a.

3. Je dán konvexní šestiúhelník ABCDEF takový, že |AB| = |BC|, |CD| = |DE| 6=
6= |AD|, |EF | = |FA| a |�BDC|+ |�EDF | = |�FDB|. Dokažte, že

|�CBA|+ |�EDC|+ |�AFE| = 360◦.

4. Podél kružnice jsou napsána alespoň čtyři reálná čísla. Platí, že v každé trojici
sousedních čísel je jedno z nich součtem zbylých dvou. Dokažte, že některá dvě ze
všech napsaných čísel mají stejnou absolutní hodnotu.

Krajské kolo kategorie A se koná

v úterý 13. ledna 2026

tak, aby začalo nejpozději v 10 hodin dopoledne a aby soutě-
žící měli na řešení úloh 4 hodiny čistého času; případné dotazy
k textu zadání mohou být zodpovězeny v prvních 20 minutách.
Za každou úlohu může soutěžící získat 6 bodů; hodnotí se při-
tom nejen správnost výsledku, ale i logická bezchybnost a úpl-
nost sepsaného postupu, výsledky všech potřebných písemných
nebo pamětných výpočtů musí být zaznamenány. Bodová hra-
nice k určení úspěšných řešitelů bude stanovena centrálně po
vyhodnocení statistik bodových výsledků ze všech krajů. Povo-
lené pomůcky jsou psací a rýsovací potřeby a školní MF tabulky.
Kalkulačky, notebooky ani žádné jiné elektronické pomůcky do-
voleny nejsou. Tyto údaje se žákům sdělí před zahájením sou-
těže.
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1. Pro reálná čísla x a y jsou čísla x + y a x2 + y2 celá. Je nutně i číslo x3 + y3 celé?
(Tomáš Bárta)
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Tedy za daných podmínek nemusí x3 + y3 být celým čísel.

Komentář. Přestože je podané řešení úplné, vysvětlíme, jak dvojici x, y najít.
Platí x3 + y3 = (x + y)3 − 3x2y− 3xy2 = (x + y)3 − 3xy(x + y). Protože x + y je celé

číslo, je i (x+ y)3 celé číslo. To znamená, že x3 + y3 je celé číslo, právě když 3xy(x+ y) je
celé číslo. Dále (x + y)2 = x2 + y2 + 2xy, odkud vyjádříme xy = 1

2 [(x + y)2 − (x2 + y2)].
Čísla (x + y)2 a x2 + y2 jsou celá a pokud budou mít různou paritu, pak bude xy ve
tvaru 1

2 m, kde m je liché celé číslo. Platí tak 3xy(x + y) = 3
2 m(x + y), tedy pokud x + y

bude liché číslo, pak 3xy(x + y) nebude celé číslo, a proto ani x3 + y3 nebude celé číslo.
Stačí tedy najít taková reálná čísla x, y, aby x + y bylo liché číslo a x2 + y2 sudé číslo.
Například volbou x + y = 1 a x2 + y2 = 2 vyřešením kvadratické rovnice po dosazení
y = 1− x dostaneme x = 1

2 (1 +
√

3) a y = 1
2 (1−

√
3) z uvedeného řešení.

Poznámka. Je také možné vyjádřit x3 + y3 pouze pomocí x + y a x2 + y2. Jelikož
xy = 1

2 [(x+y)2− (x2 +y2)], tak po dosazení do x3 +y3 = (x+y)3−3xy(x+y) a následné
úpravě dostaneme

x3 + y3 = (x + y)[3(x2 + y2)− (x + y)2]
2 .

Jednoduchým rozborem parit čísel x + y a x2 + y2 vidíme, že x3 + y3 není celé číslo právě
tehdy, když je x + y liché a x2 + y2 sudé číslo.

Poznámka. Dvojice reálných čísel x, y, pro něž jsou čísla x + y a x2 + y2 celá, ale
číslo x3 + y3 celé není, jsou právě dvojice {x, y} = { 1

2 (s +
√

r), 1
2 (s−

√
r)}, kde s je liché

celé číslo a r je nezáporné celé číslo, které při dělení 4 dává zbytek 3.

Za úplné řešení udělte 6 bodů. V neúplných řešeních oceňte částečné kroky z výše popsaných postupů
následovně:
A1. Vyjádření x3 +y3 = (x+y)3−3xy(x+y), kde člen 3xy(x+y) je zapsán v součinovém tvaru: 1 bod.
B1. Vyjádření součinu xy = 1

2 [(x + y)2 − (x2 + y2)]: 1 bod.
B2. Důkaz, že pokud x + y a x2 + y2 mají různou paritu, pak xy není celé číslo: 3 body.
C1. Vyjádření součtu x3 + y3 jen pomocí x + y a x2 + y2 (tedy bez výskytu xy a podobně): 2 body.
X1. Správná odpověď bez zdůvodnění: 0 bodů.
Celkem za neúplná řešení udělte max(A1 + B1, A1 + B2, C1) bodů.

2



75. ročník MO (2025/2026) III. kolo kategorie A

2. Dokažte, že pro nekonečně mnoho celých čísel D existují dvě nesoudělná kladná celá
čísla a, b, pro která je D největším společným dělitelem čísel 5a2 + b a 5b2 + a.

(Tomáš Bárta)

Komentář. Pro přirozená čísla a, b označme D(a, b) jejich největšího společného
dělitele. Naším úkolem je dokázat, že množina

∆ = {D(5a2 + b, 5b2 + a) | a, b ∈ N, D(a, b) = 1}

je nekonečná. V prvním řešení ukážeme, že ∆ obsahuje (nekonečnou) rostoucí posloup-
nost, ve druhém, že ke každému prvočíslu p různému od 5 existuje prvek množiny ∆,
který je násobkem p, a ve třetím, že ke každému číslu a, které po dělení 5 dává zbytek 1,
existuje prvek množiny ∆, který je násobkem a.

Řešení. V tomto řešení uvedeme příklad nekonečně mnoha dvojic (a, b) nesoudělných
čísel, pro která vyjdou hodnoty D(5a2 + b, 5b2 + a) navzájem různé. Konkrétně ukážeme,
že vyhovují dvojice (a, b) = (a, 125a3 − 5a2 + 1), kde a je libovolné přirozené číslo, a že
pro ně je D(5a2 + b, 5b2 + a) = 125a3 + 1.

Nejprve vyjádříme D(5a2 +b, 5b2 +a) jako největšího společného dělitele dvou výrazů,
z nichž jeden obsahuje pouze proměnnou a. K tomu využijeme vztah, který se používá
při Eukleidově algoritmu: pro libovolná celá čísla u, v, c platí D(u, v) = D(u, v + c · u).
Po prvním použití dostaneme

D(5a2 + b, 5b2 + a) = D(5a2 + b, 5b2 + a− 5b · (5a2 + b)) =
= D(5a2 + b,−25a2b + a).

Po druhém použití

D(5a2 + b,−25a2b + a) = D(5a2 + b,−25a2b + a + 25a2 · (5a2 + b) =
= D(5a2 + b, 125a4 + a).

Zvolme b = 125a3 − 5a2 + 1, neboli 5a2 + b = 125a3 + 1. Protože a = 1, platí
125a3 − 5a2 + 1 = 5a2(25a− 1) + 1 = 1, tedy b je kladné celé číslo. Také zřejmě platí, že
čísla a a 125a3−5a2 +1 jsou nesoudělná. Zkoumaný největší společný dělitel má hodnotu

D(5a2 + b, 125a4 + a) = D(125a3 + 1, a(125a3 + 1)) = 125a3 + 1.

Jelikož 125a3 + 1 je rostoucí funkce v proměnné a, tak nabývá pro celá nezáporná čísla a
nekonečně mnoha hodnot. Takže množina ∆ je nekonečná.

Jiné řešení. V tomto řešení ukážeme, že množina

∆ = {D(5a2 + b, 5b2 + a) | a, b ∈ N, D(a, b) = 1}

obsahuje násobky nekonečně mnoha různých prvočísel. Z toho již plyne, že množina ∆ je
nekonečná – v konečné množině má totiž každý prvek jen konečně mnoho dělitelů, takže
konečná množina může obsahovat násobky jen konečně mnoha různých čísel.

Uvažujme libovolné prvočíslo p 6= 5. Najdeme dvojici (a, b) nesoudělných čísel, pro
kterou platí p | D(5a2 + b, 5b2 + a). Jelikož prvočísel je nekonečně mnoho, bude tím úkol
vyřešen.
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Zaměřme se na takové dvojice (a, b), ve kterých platí b = a + p. Potom

5a2 + b = (5a2 + a) + p a 5b2 + a = 5(a + p)2 + a = (5a2 + a) + p(10a + 5p).

Aby prvočíslo p dělilo obě čísla 5a2 + b i 5b2 + a, stačí zajistit, že p | 5a2 + a = a(5a + 1),
tedy, že a nebo 5a + 1 jsou násobkem p.
• Pokud zvolíme a jako násobek prvočísla p, bude i b = a + p násobkem p a čísla a, b

tak nebudou nesoudělná.
• Ukážeme, že pokud zvolíme a tak, že p | 5a + 1, pak čísla a, b jsou nesoudělná:

Předpokládejme, že existuje prvočíslo q, které dělí a i b = a + p, tedy dělí i b− a = p.
Jelikož q je prvočíslo, pak nutně q = p. Avšak p | 5a + 1 a zároveň platí q | a, takže
i p | a. Platí tak p | 5a + 1− 5 · a = 1, což je ve sporu s tím, že p je prvočíslo. Proto
jsou čísla a, b nesoudělná.
Zůstává pro nekonečně mnoho prvočísel p najít a tak, že p | 5a + 1. Má platit

kp = 5a + 1 pro vhodné celé číslo k, tedy hledáme a ve tvaru a = 1
5 (kp − 1). Rozlišíme

čtyři případy podle zbytku prvočísla p po dělení číslem 5:
• Pokud p ≡ 1 (mod 5), stačí zvolit k = 1, pak a = 1

5 (p− 1) je celé.
• Pokud p ≡ 2 (mod 5), zvolíme k = 3 (neboť 3 · 2 = 6 ≡ 1), pak a = 1

5 (3p − 1) je
celé.
• Pokud p ≡ 3 (mod 5), zvolíme k = 2 (neboť 2 · 3 = 6 ≡ 1), pak a = 1

5 (2p − 1) je
celé.
• Pokud p ≡ 4 (mod 5), zvolíme k = 4 (neboť 4 · 4 = 16 ≡ 1), pak a = 1

5 (4p − 1) je
celé.
V každém případě je čitatel dělitelný 5 a kladný, takže a je kladné celé číslo a platí

5a + 1 = kp, tedy p | 5a + 1.
Pro každé prvočíslo p 6= 5 jsme tak našli dvojici (a, b) nesoudělných čísel, pro kterou

platí p | D(5a2 + b, 5b2 + a). Odtud plyne, že ∆ je nekonečná.

Poznámka. Konec druhého řešení lze zkrátit, použijeme-li známé tvrzení (tzv.
Dirichletovu věta o aritmetických posloupnostech*, že prvočísel každého z tvarů p =
= 5k + 1, p = 5k + 2, p = 5k + 3, p = 5k + 4 je nekonečně mnoho. Potom místo rozlišení
čtyř případů stačí uvážit libovolný jeden z nich.

Jiné řešení. Ukážeme ještě variaci na druhé řešení, kde místo uvažování prvočísel
ukážeme, že ∆ obsahuje násobek každého čísla tvaru 5k + 1, kde k ∈ N.

Uvažme dvojice (a, b) = (a, 6a + 1). Tato čísla jsou zřejmě nesoudělná. Potom

5a2 + b = 5a2 + 6a + 1 = (5a + 1)(a + 1)

a

5b2 + a = 5(6a + 1)2 + a = 5(36a2 + 12a + 1) + a = 180a2 + 61a + 5 = (5a + 1)(36a + 5).

To znamená, že D(5a2 + b, 5b2 + a) je násobkem čísla 5a + 1. Jelikož čísel tvaru 5a + 1 je
nekonečně mnoho, lze řešení dokončit stejně jako v prvním odstavci předchozího řešení.

* O této větě se můžete dozvědět více např. zde.
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Za úplné řešení udělte 6 bodů.
V neúplných řešeních, která postupují podobně jako první uvedené vzorové řešení (tj. vyjadřují

D(5a2 + b, 5b2 + a) přesně, typicky pomocí Eukleidova algoritmu) udělte částečné body následovně:

A1. Vyjádření D(5a2+b, 5b2+a) = D(5a2+b, P (a)), kde P (a) závisí pouze na a (např. P (a) = 125a4+a):
3 body.

A2. Popis nekonečně mnoha nesoudělných dvojic (a, b), pro které vyjdou různé hodnoty D(5a2+b, 5b2+a),
včetně zdůvodnění (např. (a, b) = (a, 125a3 − 5a2 + 1)): 6 bodů.

X1. Chybějící zdůvodnění, že zkonstruovaná čísla a, b jsou nesoudělná: −1 bod.

Celkově udělte max(A1, A2 + X1) bodů.

V neúplných řešeních, která postupují podobně jako druhé a třetí vzorové řešení (tj. ukazují, že
množina ∆ obsahuje násobky nekonečně mnoha různých čísel d) udělte částečné body následovně:

B1. Důkaz, že pokud d | 5a2 + b a d | 5b2 + a, pak d | (a− b)(5a + 5b− 1): 1 bod.
B2. Důkaz, že pokud d | 5a2 + b a d | 5b2 + a, pak d | Q(a), kde Q(a) zavisí jen na a (např.

Q(a) = 125a4 + a): 2 body.
B3. Důkaz, že množina ∆ obsahuje násobky nekonečně mnoho čísel d (např. uvážením dvojic (a, b) =

= ( 1
5 (p − 1), 1

5 (p − 1) + p), kde p = 5k + 1 je prvočíslo, nebo uvážením dvojic (a, b) = (a, 6a + 1)):
4 body.

C1. Dokončení řešení za předpokladu, že ∆ obsahuje násobky nekonečně mnoha čísel d: 2 body.

Celkově udělte max(B1, B2, B3) + C1 bodů.

Částečné body získané z různých schémat nelze kombinovat.
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3. Je dán konvexní šestiúhelník ABCDEF takový, že |AB| = |BC|, |CD| = |DE| 6=
6= |AD|, |EF | = |FA| a |�BDC|+ |�EDF | = |�FDB|. Dokažte, že

|�CBA|+ |�EDC|+ |�AFE| = 360◦.

(Patrik Bak)

Řešení. Z předpokladu úlohy o velikostech úhlů |�BDC| + |�EDF | = |�FDB|
dostáváme, že obraz polopřímky DC v osové souměrnosti podle BD je totožný s obrazem
polopřímky DE v osové souměrnosti podle DF (obr. 1). Odtud spolu s předpokladem
|CD| = |DE| plyne, že obraz C ′ bodu C v osové souměrnosti podle BD je totožný
s obrazem bodu E v osové souměrnosti podle DF , přičemž platí |DC ′| = |DC| = |DE| 6=
6= |DA|. Jelikož |DC ′| 6= |DA|, body A a C ′ jsou různé. Z vlastností osové souměrnosti
platí |BC ′| = |BC| = |BA| a |C ′F | = |EF | = |FA|. Jelikož body A, C ′ jsou různé, plyne
odtud, že jsou souměrně sdružené podle přímky BF .

A
B

C

D

E

FC ′

Obr. 1

Jelikož bod C ′ je souměrně sdružený s body A, C, E po řadě podle přímek BF , BD,
DF a šestiúhelník ABCDEF je konvexní, bod C ′ leží uvnitř trojúhelníku BDF . Platí
tak

|�BC ′D|+ |�FC ′B|+ |�DC ′F | = 360◦.
Z osových souměrností dále dostáváme

|�DCB|+ |�BAF |+ |�FED| = |�BC ′D|+ |�FC ′B|+ |�DC ′F | = 360◦.

Součet vnitřních úhlů šestiúhelníku ABCDEF je 720◦, a proto

|�CBA|+ |�EDC|+ |�AFE| = 720◦ − (|�DCB|+ |�BAF |+ |�FED|) =
= 720◦ − 360◦ = 360◦,

jak jsme měli dokázat.

A = C ′B

C

D

E

F

Obr. 2
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Poznámka. Podmínka |AD| 6= |CD| = |DE| je nezbytná. V případě |AD| = |CD| =
= |DE| bude C ′ totožný s bodem A a platilo by |�BAF | = |�FED| + |�DCB|
místo |�FED| + |�BAF | + |�DCB| = 360◦. Lze tak ukázat, že dokazované tvrzení
|�CBA|+ |�EDC|+ |�AFE| = 360◦ v tomto případě nemusí platit, viz obr. 2.

Za úplné řešení udělte 6 bodů. V neúplných řešeních oceňte částečné kroky z výše popsaného postupu
následovně:

A1. Uvedení, že obraz přímky CD v osové souměrnosti podle BD je totožný s obrazem přímky DE
v osové souměrnosti podle DF : 1 bod.

A2. Zdůvodnění, že obraz bodu C v osové souměrnosti podle BD je totožný s obrazem bodu E v osové
souměrnosti podle DF : 2 body.

B1. Důkaz, že jsou body A a C ′ osově souměrné podle BF : 2 body.
X1. Chybějící zdůvodnění, že jsou body A a C ′ různé: −1 bod.
C1. Dokončení řešení za předpokladu A2, B1: 2 body.

Celkově za neúplná řešení udělte max(A1, A2) + max(B1 + X1, 0) + C1 bodů.
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4. Podél kružnice jsou napsána alespoň čtyři reálná čísla. Platí, že v každé trojici
sousedních čísel je jedno z nich součtem zbylých dvou. Dokažte, že některá dvě ze
všech napsaných čísel mají stejnou absolutní hodnotu. (Josef Tkadlec)

Řešení. Nechť v trojici sousedních čísel a, b, m má číslo m největší absolutní hodnotu,
tj. platí |m| = max(|a|, |b|, |m|), ukážeme, že pak |m| = |a|+ |b|. Pokud je v trojici čísel a,
b, m jedno číslo součtem zbylých dvou, pak v trojici −a, −b, −m bude mít tuto vlastnost
i číslo k němu opačné, proto můžeme bez újmy na obecnosti předpokládat, že číslo m je
nezáporné. Nechť platí a = b + m, potom číslo b musí být nekladné a číslo a nezáporné
(jinak by nebylo m největší z nich), platí tak m = a− b, tedy i |m| = |a|+ |b|. Totéž platí
i v případě b = a + m. Konečně nechť m = a + b, jelikož m je největší z čísel, musí být
obě čísla a, b nezáporná a i v tomto případě platí |m| = |a|+ |b|.

Nechť m je takové z čísel podél kružnice, které má největší absolutní hodnotu.
Označme a, b jeho sousední čísla a c druhé sousední číslo s b. V trojici sousedních čísel
(a, m, b) podle prvního odstavce platí |m| = |a| + |b|, v trojici sousedních čísel (m, b, c)
platí |m| = |b| + |c|. Tedy |a| + |b| = |m| = |b| + |c|, odkud již vidíme, že |a| = |c|, jak
jsme měli dokázat.

Jiné řešení. Úlohu dokážeme sporem. Předpokládejme, že lze čísla napsat tak, že
žádná dvě nemají stejnou absolutní hodnotu. Podívejme se na trojice sousedních čísel
ve směru hodinových ručiček. Trojici (a, b, c) nazveme typu L, pokud platí a = b + c,
typu S, pokud platí b = a + c, a typu P, pokud platí c = a + b. Vezměme libovolnou
čtveřici sousedních čísel (a, b, c, d) a zkoumejme případy podle toho, jakého typu jsou
trojice (a, b, c) a (b, c, d).
• (a, b, c) je typu S, tedy b = a + c.

- Pokud by byla (b, c, d) = (a + c, c, d) typu L, pak a + c = c + d, takže a = d, což
je ve sporu s předpokladem.

- Pokud by byla (b, c, d) = (a + c, c, d) typu S, pak c = a + c + d, tedy a = −d,
takže i v tomto případě dostáváme spor.

- Pokud by byla (b, c, d) = (a + c, c, d) typu P, pak d = a + 2c, což není ve sporu
s předpokladem.

• (a, b, c) je typu P, tedy c = a + b.
- Pokud by byla (b, c, d) = (b, a + b, d) typu L, pak b = a + b + d, tedy a = −d, což

je ve sporu s předpokladem.
- Pokud by byla (b, c, d) = (b, a + b, d) typu S, tedy a + b = b + d, tak a = d, takže
i v tomto případě dostáváme spor.

- Pokud by byla (b, c, d) = (b, a + b, d) typu P, pak d = a + 2b, což není ve sporu
s předpokladem.

Nyní zkoumejme typy trojic podél celé kružnice. Pokud je nějaká trojice typu S, tak
buď získáme spor výše uvedeným postupem, nebo trojice napravo je typu P. Pokud je
nějaká trojice typu P, pak buď je napravo trojice typu P, nebo dostaneme spor. Jelikož
jsou čísla napsána podél kruhu, platí, že pokud se někde vyskytuje trojice typu P, tak
nedostaneme spor jedině v případě, kdy jsou všechny trojice typu P. Ze symetrie vzhledem
ke směru pohybu po kružnici vidíme, že pokud je někde trojice typu L, tak buď nalevo
je trojice typu L, nebo dostaneme spor. Takže analogicky dostaneme, že pokud se někde
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vyskytuje trojice typu L, tak nedostaneme spor jedině v případě, že jsou všechny trojice
typu L.

Zbývá tak vyřešit dva případy: všechny trojice jsou typu P nebo všechny trojice jsou
typu L. Nechť jsou všechny typu P (druhý případ se vyřeší zcela analogicky). Pokud se
mezi čísly vyskytuje 0, podíváme se na trojici (0, x, y), kde x, y jsou čísla napravo od 0.
Jelikož trojice je typu P, tak y = x+0, takže se opět dostaneme do sporu s předpokladem.

Předpokládejme tedy, že jsou všechny trojice sousedních čísel typu P a současně jsou
všechna čísla nenulová. Ukážeme, že tato možnost také vede ke sporu. Označme dvě
sousední čísla a, b, tuto dvojici nazveme počáteční. Potom následuje a+b, a+2b, 2a+3b,
3a + 5b, . . . a matematickou indukcí se snadno dokáže, že číslo o i napravo od počáteční
dvojice je rovno Fi · a + Fi+1 · b, kde Fi jsou Fibonacciho čísla tj. čísla splňující F0 = 0,
F1 = 1 a Fi+1 = Fi + Fi−1, pro i = 1.

Označme n počet čísel podél kružnice. Jelikož jsou čísla podél kružnice, číslo o n− 1
napravo od počáteční dvojice je číslo a a číslo o n napravo od počáteční dvojice je číslo b.
Platí proto

a = Fn−1 · a + Fn · b
b = Fn · a + Fn+1 · b = Fn · a + (Fn−1 + Fn)b.

(1)

Tyto rovnice upravíme na tvar

a(Fn−1 − 1) = −Fn · b,
b(Fn−1 − 1 + Fn) = −Fn · a.

Po vynásobení rovností a po následném dělení nenulovým číslem ab dostáváme

(Fn−1 − 1 + Fn)(Fn−1 − 1) = F 2
n .

Jelikož n = 4, je Fn−1 − 1 = 1. Nechť d je největší společný dělitel čísel Fn−1 − 1, Fn a
k, ` jsou nesoudělná čísla, pro která platí Fn−1 − 1 = d · k a Fn = d · `. Potom

(d · k + d · `)d · k = (d · `)2,

(k + `)k = `2.

Jelikož k dělí levou stranu rovnosti, musí dělit i její pravou stranu. Čísla k a ` jsou
nesoudělná a proto nutně k = 1. Takže platí

` + 1 = `2, čili 1 = `(`− 1).

Tedy číslo 1 má být součinem dvou po sobě jdoucích celých čísel. To je spor s před-
pokladem, že všechna čísla podél kružnice jsou nenulová. Podobně bychom dostali spor
i v případě, kdy jsou všechny trojice typu L.

Takže ve všech případech jsme dostali spor s předpokladem, že lze čísla napsat tak, že
žádná dvě nemají stejnou absolutní hodnotu, proto vždy mají některá dvě čísla stejnou
absolutní hodnotu.

Komentář. Ukážeme jiný způsob, jak dokázat, že rovnost

(Fn−1 − 1 + Fn)(Fn−1 − 1) = F 2
n
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neplatí pro n = 4. Po úpravách dostaneme

F 2
n − Fn(Fn−1 − 1)− (Fn−1 − 1)2 = 0.

Číslo Fn je tedy kořenem kvadratické rovnice

x2 − x(Fn−1 − 1)− (Fn−1 − 1)2 = 0.

Užitím známého vzorce platí pro kořeny této tovnice

x1,2 = (Fn−1 − 1)±
√

(Fn−1 − 1)2 + 4(Fn−1 − 1)2

2 = (Fn−1 − 1)±
√

5(Fn−1 − 1)2

2 =

= (Fn−1 − 1) · 1±
√

5
2 ,

přičemž pro n = 4 je Fn−1−1 = 1. Vzhledem k tomu, že Fibonacciho posloupnost obsahuje
jen celá čísla, jsou oba kořeny této kvadratické rovnice iracionální. Odtud plyne, že pro
žádné přirozené n = 4 nemůže platit F 2

n − Fn(Fn−1 − 1)− (Fn−1 − 1)2 = 0.

Za úplné řešení udělte 6 bodů. V neúplných řešeních oceňte částečné kroky z výše popsaných postupů
následovně:

A1. Vyřešení všech případů až na ten, kdy jsou všechny trojice typu P (nebo typu L): 2 body.
A2. Převedení případu, kdy jsou všechny trojice typu P (nebo typu L) na soustavu dvou rovnic, např. (1):

1 bod.
A3. Důkaz, že soustava v A2 nemá řešení: 3 body.

Celkově za neúplná řešení udělte A1 + A2 + A3 bodů.
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