
75. ročník Matematické olympiády (2025/2026)

Úlohy školního kola kategorie B

1. Rozhodněte, zda je možné označit hrany krychle čísly 1, 2, . . . , 12 tak, aby každé číslo
bylo použito a aby pro každý vrchol byl součet čísel hran, které z něj vycházejí, stejný.

2. Máte pravítko bez měřítka, které umožňuje pouze vést přímku libovolnými dvěma
body, a kružítko, kterým lze rýsovat pouze kružnice s libovolným celočíselným
poloměrem. Popište a zdůvodněte konstrukci rovnostranného trojúhelníku o straně
délky

√
7.

3. Přirozené číslo nazveme pětinové, pokud přesně 20 % jeho dělitelů končí číslicí 5.
a) Nalezněte nějaké pětinové číslo.
b) Dokažte, že každé pětinové číslo má přesně 60 % dělitelů končících číslicí 0.

Školní kolo kategorie B se koná

v úterý 27. ledna 2026

tak, aby začalo nejpozději v 10 hodin dopoledne a aby sou-
těžící měli na řešení úloh 4 hodiny čistého času; případné
dotazy k textu zadání mohou být zodpovězeny v prvních
20 minutách. Za každou úlohu může soutěžící získat 6 bodů;
hodnotí se přitom nejen správnost výsledku, ale i logická
bezchybnost a úplnost sepsaného postupu, výsledky všech
potřebných písemných nebo pamětných výpočtů musí být
zaznamenány. Úspěšným řešitelem je ten žák, který získá
10 bodů nebo více. Povolené pomůcky jsou psací a rýso-
vací potřeby a školní MF tabulky. Kalkulačky, notebooky
ani žádné jiné elektronické pomůcky dovoleny nejsou. Tyto
údaje se žákům sdělí před zahájením soutěže.
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1. Rozhodněte, zda je možné označit hrany krychle čísly 1, 2, . . . , 12 tak, aby každé číslo
bylo použito a aby pro každý vrchol byl součet čísel hran, které z něj vycházejí, stejný.

(Mária Dományová)

Řešení. Ukážeme, že to není možné. Pro spor předpokládejme, že to možné je,
a označme S součet čísel hran u každého z vrcholů. Protože každá hrana spojuje dva
vrcholy, je její číslo započítáno do součtů u dvou vrcholů, a dvojnásobek součtu čísel
u všech hran je tak roven 8S. Platí tedy

8S = 2(1 + 2 + . . . + 12) = 156

a odtud úpravou
S = 156

8 = 19,5.

Číslo S jakožto součet několika celých čísel musí být celé. To je spor, a tedy hrany krychle
není možné požadovaným způsobem označit.

Jiné řešení. Úvaha z předchozího řešení lze obměnit následovně:
čtveřice vrcholů vyznačených na obrázku má tu vlastnost, že každá hrana
krychle vychází z právě jednoho z nich. To znamená, že součet všech čísel
u hran je roven 4S, což vede na stejnou rovnost a spor s celočíselností S
jako v předchozím řešení.

Komentář. Uvedená řešení jsou formulována jako důkaz sporem na základě struč-
ného argumentu, který se může zdát obtížné vymyslet. Touto poznámkou bychom chtěli
čtenáře přesvědčit, že se jedná o velmi přirozený argument. Nejprve se pokoušíme hra-
nám nějakým způsobem přiřazovat čísla a zkoumáme, jak se chovají součty u jednotlivých
vrcholů. Předpokládejme, že jedním takovým pokusem jsme přiřadili hranám kolem jed-
noho vrcholu čísla 5, 7 a 10. To dává součet 22, takže kolem obou krajních vrcholů hrany
s číslem 1 musí být (disjunktní) dvojice čísel se součtem 21. Takovou dvojici máme ale už
jen jednu (12 a 9), takže docházíme k závěru, že tato čísla byla jakožto ohodnocení tro-
jice hran vycházejících ze stejného vrcholu krychle příliš velká. Obecněji, protože máme
přesně dáno, která čísla máme k dispozici, tak zvolíme-li kolem jednoho vrcholu příliš
velká čísla, nutně na jiné vrcholy zbydou čísla příliš malá na to, aby mohly součty u vr-
cholů vyjít všechny stejně. Tedy samotná hodnota součtů S nesmí být příliš vysoká ani
příliš nízká. Na S se musejí sečíst nějaká tři čísla z množiny {1, . . . , 12}, tedy

1 + 2 + 3 = 6 5 S 5 10 + 11 + 12 = 33

– vidíme, že omezení získané rozborem situace jen u jediného vrcholu je velmi slabé.
Podívejme se na dva protější vrcholy krychle. Ty nemají žádné společné hrany a čísla
u nich se neopakují, takže sečtením čísel u těchto šesti hran dostaneme nerovnosti

1 + 2 + 3 + 4 + 5 + 6 = 21 5 2S 5 7 + 8 + 9 + 10 + 11 + 12 = 57,

takže 10,5 5 S 5 28,5, což už je těsnější odhad. Je zřejmé, že ideální by bylo do odhadu
zapojit všech dvanáct čísel (pak by dvě nerovnosti přešly v jednu rovnost). Musíme si ale
rozmyslet, na které vrcholy se podívat, ke kterému vrcholu započítat číslo které hrany
a podobně, kteréžto úvahy jsou jádrem zmíněných výše uvedených řešení.
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Poznámka. Další možností je – podobně jako u první úlohy domácího kola – sestavit
8 rovnic (pro každý vrchol jedna) o třinácti neznámých (čísla u hran a součet S) typu
a + b + c = S. Sečtením několika z nich a pomocí znalosti toho, která čísla se u hran
vyskytují (víme, že jsou to čísla 1 až 12, každé právě jednou, neznáme ale jejich rozmístění)
je také možné dojít k výpočtu hodnoty S = 19,5.

Za úplné řešení udělte 6 bodů. V neúplných řešeních ohodnoťte kroky následovně:

A1. Tvrzení, že to není možné: 1 bod
A2. Označení společného součtu u vrcholů (S) nebo zkoumání této hodnoty: 1 bod
A3. Odvození nějakého platného odhadu na S (např. jako v poznámce výše) nebo neplatné ale „rozumné“

rovnice pro S (např. 1 + . . . + 12 = 8S): 1 bod
A4. Sestavení správné rovnice pro S: 3 body
A5. Argumentace neceločíselností S a formulace závěru: 1 bod

Celkově za neúplná řešení udělte A1 + A2 + max(A3, A4) + A5 bodů.
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2. Máte pravítko bez měřítka, které umožňuje pouze vést přímku libovolnými dvěma body,
a kružítko, kterým lze rýsovat pouze kružnice s libovolným celočíselným poloměrem.
Popište a zdůvodněte konstrukci rovnostranného trojúhelníku o straně délky

√
7.

(Tomáš Bárta)

Řešení. Základní myšlenkou je rozdělit úlohu na dvě části: sestrojit úsečku délky
√

7
a za pomoci této schopnosti „oříznout“ větší rovnostranný trojúhelník – uvědomme si, že
standardní postup konstrukce rovnostranného trojúhelníku o dané délce strany (kterou již
máme sestrojenou jakožto úsečku) naše omezené kružítko dovoluje pouze pro celočíselné
délky.

Pro první část využijeme Pythagorovu větu ve tvaru a =
√

c2 − b2, kde c (délku
přepony) a b (délku jedné odvěsny) zvolíme jako vhodná celá čísla. Nabízí se c = 4
a b = 3, neboť

42 − 32 = 16− 9 = 7.

Zbytek řešení obsahuje celý postup konstrukce (viz obrázek 1):

1. Standardním postupem sestrojíme rovnostranný trojúhelník ABC s nějakou celočí-
selnou délkou strany.

2. Bodem A vedeme kolmici p k přímce AB. To lze provést i s omezeným kružítkem
(a pravítkem) takto: na přímce AB najdeme pomocí kružítka dva různé body X, Y
tak, aby |AX| = |AY | = r (bod A bude tedy středem úsečky XY ) pro nějaké celé
číslo r. Následně sestrojíme průsečíky kružnic o poloměru R (R celé, R > r) se středy
v X a Y . Jejich spojnicí je hledaná kolmice k přímce AB procházející bodem A.

3. Pomocí kružnice se středem v A a poloměrem 3 najdeme na přímce p bod K tak, že
|AK| = 3 (máme dva průsečíky, z následujícího postupu je vidět, že nezáleží na tom,
se kterým budeme pracovat).

4. Sestrojíme kružnici se středem v bodě K a poloměrem 4. Tato kružnice protne
polopřímku AB v právě jednom bodě, který označíme B′.

A

B

C

K

B′

3
4

X Y

Obr. 1 Konstrukce bodu B′
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5. Trojúhelník AKB′ je pravoúhlý s přeponou KB′ délky 4 a odvěsnou AK délky 3,
takže podle Pythagorovy věty platí

|AB′| =
√
|KB′|2 − |AK|2 =

√
42 − 32 =

√
7.

6. Analogickým postupem najdeme na polopřímce AC bod C ′ splňující |AC ′| =
√

7.
7. Narýsováním přímky B′C ′ pak získáme trojúhelník AB′C ′, který splňuje |AB′| =

= |AC ′| =
√

7 a |�B′AC ′| = 60◦, takže je rovnoramenný se základnou B′C ′, a tedy
(dle věty sus) rovnostranný.

Jiné řešení. Alternativní možností získání úsečky s délkou
√

7 je použití jedné z Eu-
kleidových vět, kde se také vyskytují druhé mocniny délek. Například podle Eukleidovy
věta o výšce v trojúhelníku PQR s patou S výšky z vrcholu P platí, že |PS|2 = |QS|·|RS|,
takže volba |QS| = 1 a |RS| = 7 dává jednak správnou délku výšky a současně kružnici
nad průměrem QR můžeme sestrojit naším omezeným kružítkem (délka jejího poloměru
je 7+1

2 = 4). K získání požadované délky na polopřímce AB (obsahující stranu již se-
strojeného rovnostranného trojúhelníku ABC) budeme délky 1 a 7 nanášet na kolmici
k polopřímce AB vedenou bodem A, kterou sestrojíme stejně jako v předchozím řešení.

Jiné řešení. V tomto řešení ukážeme, že jako vrcholy hledaného trojúhelníku lze
použít vhodné body jednotkové trojúhelníkové sítě. Sestrojíme kružnici o poloměru 1, na
ní zvolíme libovolný bod, ten vezmeme jako střed další jednotkové kružnice. V dalším
kroku vezmeme jako střed některý se získaných průsečíků a postup opakujeme, dokud
nezískáme všechny označené body z obrázku 2.

X

Y

R

Q

P Z

S

T

Obr. 2

Pak |Y Z| =
√

7, což lze ověřit např. pomocí kosinové věty v trojúhelníku Y PZ

|Y Z|2 = |PY |2 + |PZ|2 − 2 · |PY | · |PZ| · cos |�ZPY | = 4 + 1− 2 · 2 · cos(120◦) = 7

nebo pomocí Pythagorovy věty použité v trojúhelnících PQY a ZQY (Q je pata kolmice
z bodu Y na přímku PZ neboli střed příslušné jednotkové úsečky RP .)

|Y Z|2 = |QZ|2 + |QY |2 = |QZ|2 + |PY |2 − |PQ|2 =
(

5
2

)2
+ 1−

(
1
2

)2
= 7.
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Zbývá ukázat, že i úsečky XY a XZ mají stejnou délku. To je ale vidět ze symetrie celého
obrázku, přesněji ze shodnosti trojúhelníků RZY , TXZ a SY X.

Za úplné řešení udělte 6 bodů.

• V neúplných řešeních postupujících podle prvního nebo druhého vzorového řešení ohodnoťte kroky
následovně:

A1. Nalezení vhodných délek pro Pythagorovu větu nebo ekvivalent: 2 body
A2. Popis konstrukce kolmice k přímce jejím daným bodem: 1 bod
A3. Popis zbytku konstrukce vhodného pravoúhlého trojúhelníku: 1 bod
A4. Použití rovnostranného trojúhelníku s celočíselnou délkou strany: 1 bod
A5. Dokončení konstrukce požadovaného rovnostranného trojúhelníku a příslušné zdůvodnění: 1 bod

Celkově za neúplná řešení udělte A1 + A2 + A3 + A4 + A5 bodů.

• Kroky řešení postupujících podle třetího vzorového řešení (s trojúhelníkovou sítí) ohodnoťte takto:

B1. Popis konstrukce vhodné části jednotkové trojúhelníkové sítě: 1 bod
B2. Nalezení vrcholů sítě tvořících úsečku délky

√
7 bez důkazu: 1 bod

B3. Nalezení vrcholů sítě tvořících rovnostranný trojúhelník o straně
√

7 bez důkazu: 2 body
B4. Důkaz tvrzení B2 nebo B3: 3 body

Za tato řešení dejte celkem B1 + max(B2, B3) + B4 bodů.

• Kroky odlišných řešení ohodnoťte takto:

C1. Konstrukce úsečky délky
√

7 včetně zdůvodnění: 4 body
C2. Konstrukce rovnostranného trojúhelníku s již sestrojenou neceločíselnou délkou strany: 2 body

Za tato řešení dejte celkem C1 + C2 bodů.
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3. Přirozené číslo nazveme pětinové, pokud přesně 20 % jeho dělitelů končí číslicí 5.
a) Nalezněte nějaké pětinové číslo.
b) Dokažte, že každé pětinové číslo má přesně 60 % dělitelů končících číslicí 0.

(Josef Tkadlec)

Řešení. Nechť n má prvočíselný rozklad n = 2a · 5b ·m pro nějaká celá čísla a, b = 0
a přirozené číslo m nesoudělné s 2 i s 5. Podobně jako v řešení druhé úlohy domácího
kola ukážeme, že počet dělitelů* čísla n je

d(n) = (a + 1)(b + 1)d(m),

kde d(m) je počet dělitelů čísla m. Každý takový dělitel je totiž tvaru

2i · 5j · k,

kde i ∈ {0, 1, . . . , a}, j ∈ {0, 1, . . . , b} a k je dělitel čísla m, přičemž různé trojice (i, j, k)
dávají různé dělitele. Tedy máme a + 1 možností při výběru exponentu i, b + 1 možností
při výběru exponentu j a d(m) možností při výběru dělitele k (viz např. doplňující úlohu
D1 ke druhé soutěžní úloze domácího kola). Dělitel čísla n končí číslicí 5 právě tehdy, když
je dělitelný 5 a zároveň není dělitelný 2. Takový dělitel musí mít ve svém prvočíselném
rozkladu:
• prvočíslo 2 s exponentem 0 (jediná možnost),
• prvočíslo 5 s exponenty 1, 2, . . . , b (celkem b možností),
• libovolný dělitel čísla m (d(m) možností).

Počet dělitelů končících číslicí 5 je tedy 1 · b · d(m). Podmínka 20 % ze zadání říká,
že tento počet tvoří pětinu všech dělitelů, neboli

b · d(m)
(a + 1)(b + 1)d(m) = 1

5 . (1)

Po zkrácení kladným číslem d(m) a dalších úpravách dostáváme postupně

b

(a + 1)(b + 1) = 1
5 ,

5b = (a + 1)(b + 1),
ab + a− 4b + 1 = 0,

b(a− 4) = −a− 1,

b = a + 1
4− a

.

Jelikož jsou čísla a, a + 1 i b nezáporná, musí platit a ∈ {0, 1, 2, 3} a vyzkoušením všech
čtyř hodnot dostaneme jediné celočíselné řešení a = 3, b = 4.

Proto n = 23 · 54 · m = 5000 · m, přičemž na hodnotě m nezáleží (musí ovšem být
nesoudělná s 2 i 5). S touto charakterizací všech pětinových čísel oba úkoly soutěžní úlohy
snadno dokončíme.

* V celém řešení dělitelem myslíme kladný dělitel. Pokud tvrzení v části b) platí pro kladné dělitele, pak
zřejmě platí i pro záporné, takže zmíněné tvrzení platí, ať už dělitele v zadání interpretujeme jako výhradně
kladné, nebo všechny celočíselné.
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a) Zvolíme nejjednodušší možnost m = 1. Pak n = 5000 je pětinové číslo.
b) Postupujeme analogicky jako v úvodu řešení. Dělitel čísla n = 23 ·54 ·m končí číslicí 0,

pokud je dělitelný 10 (tedy 2 i 5). Exponent u 2 tohoto dělitele můžeme vybrat třemi
způsoby (z celkem čtyř), exponent u 5 čtyřmi způsoby (z celkem pěti), dělitele m pak
d(m) způsoby. Podíl dělitelů pětinového čísla, které končí nulou, je tedy roven

3 · 4 · d(m)
4 · 5 · d(m) = 3

5 = 60 %.

Poznámka. Ukážeme dvě alternativní řešení rovnice (1). Vztah pro b lze dále
upravit na

b = a + 1
4− a

= −1 + 5
4− a

.

Protože a i b jsou celá nezáporná čísla, 4− a je kladným dělitelem 5, tedy a = 3.
Ještě jinou možností je rozložit výraz na levé straně rovnice

ab + a− 4b + 1 = 0

jako
0 = ab + a− 4b + 1 = (a− 4)(b + 1) + 5,

tedy (a−4)(b+1) = −5. Protože a, b jsou nezáporná celá čísla, je b+1 = 1. Číslo −5
lze rozložit na součin dvou celých čísel, kde druhý činitel je kladný, pouze dvěma
způsoby jako (−5) · 1 nebo (−1) · 5. Pak
• a− 4 = −5, z čehož a = −1, což nelze,
• a− 4 = −1, z čehož a = 3, pak b + 1 = 5, neboli b = 4.

Jediným řešením je opět dvojice exponentů (a, b) = (3, 4).

Jiné řešení. Ukážeme řešení, které explicitně nepracuje se vzorcem pro počet
dělitelů. Předpokládejme nejprve, že se v prvočíselném rozkladu pětinového čísla n
vyskytují pouze prvočísla 2 a 5. Všechna taková čísla uspořádáme do následující
tabulky obsahující v políčku na i-tém řádku a j-tém sloupci číslo 5i−1 · 2j−1.

1 2 22 23 . . .

5 10 20 40 . . .

52 50 100 200 . . .

53 250 500 1000 . . .
... ... ... ... . . .

Všechny dělitele čísla v políčku P pak tvoří obdélníkovou „podtabulku“ s pravým
dolním rohem v P a levým horním rohem shodným s levým horním rohem celé tabulky
(políčko s číslem 1). Takovým podtabulkám budeme říkat krátce jen obdélníky. (Na
výše uvedeném obrázku uvažujeme políčko (2, 3) s číslem 20 a jemu příslušný obdélník
se všemi jeho děliteli je podbarven.)

Číslo končí číslicí 5 právě tehdy, když je dělitelné 5, ale nikoli 2. V tabulce to
odpovídá přesně těm políčkům, která leží v prvním sloupci a neleží v prvním řádku.
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Budeme nyní hledat takové obdélníky, v nichž je podíl těchto políček v tabulce
roven 1

5 . Nechť má obdélník s sloupců. V každém řádku je právě jedno políčko
v prvním sloupci, tedy podíl dělitelů končících číslicí 5 je menší než 1/s. Proto s < 5
(rovnost vylučuje první řádek, kde žádné číslo končící pětkou není).

Pokud má obdélník 2 sloupce a r řádků, tak podmínka pro podíl zní
r − 1

2r
= 1

5
a lze ji roznásobením převést na lineární rovnici s jediným řešením r = 5

3 , což není
přirozené číslo. Pro 3 sloupce řešíme

r − 1
3r

= 1
5 ,

což dává opět neceločíselné r = 5
2 . Pro čtyři sloupce má rovnice

r − 1
4r

= 1
5

řešení r = 5. V tomto obdélníku tvořeném celkem dvaceti čísly je právě 3 · 4 = 12
čísel končících číslicí 0, tyto dělitele pětinového čísla

23 · 54 = 5000
– řešení části a) – tedy tvoří 12

20 · 100 % = 60%.
V obecném případě, tedy pokud připouštíme i jiné prvočinitele pětinového čísla n

než 2 nebo 5, zapíšeme toto číslo stejně jako v předchozím řešení jako n = 2a · 5b ·m
pro nějaké m nesoudělné s 2 a 5. Tabulku nyní použijeme tak, že do políčka na i-tém
řádku a j-tém sloupci napíšeme všechny dělitele n, které mají v prvočíselném rozkladu
u pětky exponent i − 1 a u dvojky exponent j − 1, tedy čísla tvaru 5i−1 · 2j−1 · k,
kde k je dělitelem m. Označíme-li d(m) počet dělitelů čísla m, vidíme, že na každém
políčku je d(m) čísel. Protože v úloze vystupují jen podíly počtů dělitelů různých
typů, můžeme postupovat stejně jako ve zmíněném speciálním případě m = 1, kdy
bylo v každém políčku tabulky jediné číslo.

Za úplné řešení udělte 6 bodů. V neúplných řešeních postupujících podle prvního vzorového řešení
ohodnoťte kroky následovně:
A1. Obecné vyjádření podílu dělitelů končících 5 nebo 0: 2 body
A2. Sestavení a vyřešení rovnice pro a, b: 2 body
A3. Nalezení pětinového čísla (dokončení části a)): 1 bod
A4. Výpočet podílu dělitelů pětinových čísel končících na 0 (dokončení části b)): 1 bod

Celkově za neúplná řešení udělte A1 + A2 + A3 + A4 bodů.

Za neúplná řešení postupující podle druhého vzorového řešení udělte body takto:
B1. Popis tabulky a pozorování o tom, že dělitele nějakého jejího čísla tvoří obdélník: 2 body
B2. Použití tabulky pro nalezení pětinového čísla: 1 bod
B3. Použití tabulky pro vyřešení části b): 2 body (ve speciálním případě pro n = 2a · 5b), resp. 3

body (za obecné řešení)
Celkem udělte B1 + B2 + B3 bodů.

Za neúplná řešení postupující jiným způsobem udělte body takto:
C1. Část a): 2 body (1 za číslo, 1 za zdůvodnění)
C2. Část b): 4 body

Celkem udělte C1 + C2 bodů.
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